Browse > Article
http://dx.doi.org/10.14773/cst.2018.17.2.81

Effect of Niobium on Corrosion Fatigue Properties of High Strength Steel  

Cho, Young-Joo (School of Materials Science and Engineering, Sungkyunkwan University)
Cho, Sang-Won (School of Materials Science and Engineering, Sungkyunkwan University)
Kim, Jung-Gu (School of Materials Science and Engineering, Sungkyunkwan University)
Publication Information
Corrosion Science and Technology / v.17, no.2, 2018 , pp. 81-89 More about this Journal
Abstract
In this study, the effect of Nb alloying element on the corrosion fatigue properties of high strength steel is investigated by conducting fatigue experiments under corrosive condition and hydrogen induced condition, potentiodynamic polarization test, tensile test and surface analyses. Nb element is added to enhance the mechanical property of medium carbon steel. This element forms MX-type phases such as carbides and nitrides which are playing an important role in the grain refinement. The grain refinement is one of the effective way to improve mechanical property because both tensile strength and toughness can be improved at the same time. However, MX-type phase precipitates can be a susceptible site to localized corrosion in corrosive environment due to the potential difference between matrix and precipitate. The obtained results showed that Nb-added steel improved corrosion fatigue property by grain refinement. However, it is degraded for hydrogen-induced fatigue property due to Nb, Ti-inclusions acting as a stronger trap.
Keywords
High strength steel; Corrosion fatigue; SEM; Localized corrosion; Inclusion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. J. Hudak, O. H. Burnside, and K. S. Chan, J. Energy Resour. Technol., 107, 212 (1985).   DOI
2 F. Dubois, C. Mendibide, T. Pagnier, F. Perrard, and C. Duret, Corros. Sci., 50, 3401 (2008).   DOI
3 Richard P. Gangloff, Corrosion tests and standards: Application and interpretation, 2nd ed., p. 302, Robert Baboian, ASTM international, Baltimore (2005).
4 A. Bakkaloglu, Mater. Lett., 56, 263 (2002).   DOI
5 B. Dutta and C. M. Sellars, Mater. Sci. Technol., 3, 197 (1987).   DOI
6 Andrii G. Kostryzhev, Abdullah Al Shahrani, Chen Zhu, Simon P. Ringer, and Elena V. Pereloma., Mater. Sci. Eng. A, 581, 16 (2013).   DOI
7 S. G. Hong, K. B. Kang, and C. G. Park, Scr. Mater., 46, 163 (2002).   DOI
8 O. Kwon and A. J. DeArdo, Acta Metall. Mater., 39, 529 (1991).   DOI
9 S. Vervynckt, K. Verbeken, P. Thibaux, M. Liebeherr, and Y. Houbaert, ISIJ Int., 49, 911 (2009).   DOI
10 I. Mihaela, P. G. Mariangel, V. Andres, and E. Manuel, Eng. Fail. Anal., 83, 203 (2018).
11 R. Xuechong, W. Fei, X. Feng, and J. Bo, Eng. Fail. Anal., 55, 300 (2015).   DOI
12 N. I. I. Mansor, S. Abdullah, A. K. Ariffin, and J. Syarif, Eng. Fail. Anal., 42, 353 (2014).   DOI
13 G. Sines, J. L. Waisman, and T. J. Dolan, Metal fatigue, 1st ed., McGraw-Hill, New York (1959).
14 Y. Murakami, T. Kanezaki, and P. Sofronis, Eng. Fract. Mech., 97, 227 (2013).   DOI
15 J. P. Hirth., Metall. Mater. Trans. A, 11, 861 (1980).   DOI
16 J. Tien, A. W. Thompson, I. M. Bernstein, and R. J. Richards, Metall. Mater. Trans. A, 7, 821 (1976).   DOI
17 N. Eliaz1, A. Shacharb, B. Talb, and D. Eliezer, Eng. Fail. Anal., 9, 167 (2002).   DOI
18 W.-F. Chen and T. James, Chem. Commun., 49, 8896 (2013).   DOI
19 A. I. Kharlamov and N. V. Kirillova, Powder Metall. Met. C., 22, 123 (1983).
20 Y. Murakamia and H. Usuki, Int. J. Fatigue, 11, 299 (1989).   DOI
21 Y. Murakami and M. Endo, Int. J. Fatigue, 16, 163 (1994).   DOI
22 Y. Z. Wang, R. Akid, and K. J. Miller, Fatigue Fract. Eng. Mater. Struct., 18, 293 (1995).   DOI
23 S. Vervynckt, K. Verbekena, P. Thibauxc, and Y. Houbaert, Mater. Sci. Eng., A, 528, 5519 (2011).   DOI
24 H. S. Zurob, G. Zhu, S. V. Subramanian, G. R. Purdy, C. R. Hutchinson, and Y. Brechet, ISIJ Int., 45, 713 (2005).   DOI
25 C. R. Hutchinsona, H. S. Zurobb, C. W. Sinclairc, and Y. J. M. Brechet, Scr. Mater., 59, 635 (2008).   DOI
26 S. Xua, X. Q. Wua, E. H. Hana, W. Kea, and Y. Katada, Mater. Sci. Eng., A, 490, 16 (2008).   DOI
27 J. Tan, X. Wu, E. H. Han, W. Ke, X. Liu, F. Meng, and X. Xu, Corros. Sci., 88, 349 (2014).   DOI
28 J. C. Caicedoa, C. Amayaa, L. Yatec, W. Aperadora, G. Zambrano, M. E. Gomeza, J. Alvarado-Riverad, J. Munoz-Saldanad, and P. Prietoa, Appl. Surf. Sci., 256, 2876 (2010).   DOI
29 G. Murtaza and R. Akid, Int. J. Fatigue, 18, 557 (1996).   DOI
30 C. F. Dong, X. G. Li, Z. Y. Liu, and Y. R. Zhang, J. Alloy. Compd., 484, 966 (2009).   DOI
31 D. Hejazia, A. J. Haqa, N. Yazdipoura, D. P. Dunnea, A. Calkaa, F. Barbarob, and E. V. Pereloma, Mater. Sci. Eng. A, 551, 40 (2012).   DOI
32 H. Y. Liou, R. I. Shieh, F. I. Wei, and S. C. Wang, Corrosion, 49, 389 (1993).   DOI
33 T. Kanezakia, C. Narazakib, Y. Minea, S. Matsuokaa, and Y. Murakami, Int. J. Hydrogen Energ., 33, 2604 (2008).   DOI
34 M. Garet, A. M. Brass, C. Haut, and F. Guttierez-Solana, Corros. Sci., 40, 1073 (1998).   DOI
35 H. E. Hanninen, T. C. Lee, I. M. Robertson, and H. K. Birnbaum, J. Mater. Eng. Perform., 2, 807 (1993).   DOI