Browse > Article
http://dx.doi.org/10.14773/cst.2017.16.1.38

Benchmarking of Zinc Coatings for Corrosion Protection: A Detailed Characterization of Corrosion and Electrochemical Properties of Zinc Coatings  

Wijesinghe, Sudesh L (Diagnostics Unit, Precision Measurements Group, Singapore Institute of Manufacturing Technology)
Zixi, Tan (Diagnostics Unit, Precision Measurements Group, Singapore Institute of Manufacturing Technology)
Publication Information
Corrosion Science and Technology / v.16, no.1, 2017 , pp. 38-47 More about this Journal
Abstract
Due to various types of Zn coatings for many decades for various applications, it is imperative to study and compare their corrosion resistance properties of some of these. Here, we introduce a systematic methodology for evaluation and validation of corrosion protection properties of metallic coatings. According to this methodology, samples are were exposed in an advanced cyclic corrosion test chamber according to ISO 14993, and removed at the end of each withdrawal for respective corrosion and electrochemical characterization to evaluate both barrier and galvanic protection properties. Corrosion protection properties of coatings were evaluated by visual examination according to ISO 10289, mass loss and subsequent corrosion rate measurements, electrochemical properties, and advanced electrochemical scanning techniques. In this study, corrosion protection properties of a commercial zinc rich coating (ZRC) on AISI 1020 mild steel substrates were evaluated and benchmarked against hot dip galvanized (HDG). Results were correlated, and corrosion protection capabilities of the two coatings were compared. The zinc rich coating performed better than hot dip galvanized coating in terms of overall corrosion protection properties, according to the exposure and experimental conditions used in this study. It proved to be a suitable candidate to replace hot dip galvanized coatings for desired applications.
Keywords
steel; zinc coatings; accelerated exposure; corrosion characterization techniques;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. M. Souto, L. Fernandez-Merida, S. Gonzalez, and D. J. Scantlebury, Corros. Sci., 48, 1182 (2006).   DOI
2 I. M. Zin, S. B. Lyon, and A. Hussain, Prog. Org. Coat., 52, 126 (2005).   DOI
3 Denny A. Jones, Principles and Prevention of Corrosion, 2nd ed., Perarson Education South Asia Pte Ltd., Singapore (1996).
4 S. M. A. Shibli, A. C. Jayalekshmi, and R. Remya, Surf. Coat. Tech., 201, 7560 (2007).   DOI
5 V. Barranco, S. Feliu Jr., and S. Feliu, Corros. Sci., 46, 2221 (2004).   DOI
6 S. E. Faidi, J. D. Scantlebury, P. Bullivant, N. T. Whittler, and R. Savin, Corros. Sci., 35, 1319 (1993).   DOI
7 S. Shreepathia, P. Bajajb, and B. P. Mallika, Electrochim. Acta, 55, 5129 (2010).   DOI
8 M. Mouanga and P. Bercot, Corros. Sci., 52, 3993 (2010).   DOI
9 A. Meroufel and S. Touzain, Prog. Org. Coat., 59, 197 (2007).   DOI
10 C. Cachet, F. Ganne, S. Joiret, G. Maurin, J. Petitjean, V. Vivier, and R. Wiart, Electrochim. Acta, 47, 3409 (2002).   DOI
11 H. Marchebois, C. Savall, J. Bernard, and S. Touzain, Electrochim. Acta, 49, 2945 (2004).   DOI
12 V. Barranco, S. Feliu Jr., and S. Feliu, Corros. Sci., 46, 2203 (2004).   DOI
13 S. M. A. Shibli, and R. Manu, Appl. Surf. Sci., 252, 3058 (2006).   DOI
14 E. Diler, S. Rioual, B. Lescop, D. Thierry, and B. Rouvellou, Corros. Sci., 65, 178 (2012).   DOI
15 J. Kasperek, D. Verchere, D. Jacquet, and N. Phillips, Mater. Chem. Phys., 56, 205 (1998).   DOI
16 D. Persson, D. Thierry, and N. LeBozec, Corros. Sci., 53, 720 (2011).   DOI
17 D. J. Penney, J. H. Sullivan, and D. A. Worsley, Corros. Sci., 49, 1321 (2007).   DOI
18 M. Yan, V. J. Gelling, B. R. Hinderliter, D. Battocchi, D. E. Tallmanand, and G. P. Bierwagen, Corros. Sci., 52, 2636 (2010).   DOI
19 A. C. Bastos, M. L. Zheludkevich, and M. G. S. Ferreira, Prog. Org. Coat., 63, 282 (2008).   DOI
20 G. A. El-Mahdy, A. Nishikata, and T. Tsuru, Corros. Sci., 42, 183 (2000).   DOI