Browse > Article
http://dx.doi.org/10.14773/cst.2016.15.4.153

Precursor Events in Environmentally Assisted Cracking Behaviour of Light Metals  

Raja, V.S. (Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay)
Publication Information
Corrosion Science and Technology / v.15, no.4, 2016 , pp. 153-158 More about this Journal
Abstract
Light metal alloys of Mg, Ti, and Al undergo environmentally assisted cracking (EAC). Passive film breakdown and pitting are not only precursor events for stress corrosion, but can accelerate hydrogen evolution that is responsible for hydrogen embrittlement. This is clearly demonstrated in the case of Mg and Ti alloys. The so-called innocuous precipitates, which do not directly participate in either alloy strengthening or EAC can be effective precursors for initiating EAC. This aspect is highlighted using high strength aluminium alloys. Such behaviours lead to a paradigm shift in the design of alloys with resistance to EAC.
Keywords
environmentally assisted cracking; aluminium alloys; titanium alloys and magnesium alloys;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. P. Lynch, Stress corrosion cracking theory and practice, (eds. V. S. Raja and T. Shoji), p.1, Woodhead Publishing Limited, UK (2011).
2 S. P. Lynch, Stress corrosion cracking theory and practice, (eds. V. S. Raja and T. Shoji), p. 90, Woodhead Publishing Limited, UK (2011).
3 V. S. Raja, B. S. Padekar, Corros. Sci., 71, 176 (2013).
4 N. Winzer, A. Atrens, G. Song, E. Ghali, W. Dietzel, K. U. Kainer, N. Hort, C. Blawert, Adv. Eng. Mater., 7, 659 (2005).   DOI
5 B. S. Padekar, R. K. S. Raman, V. S. Raja, L. Paul, Corros. Sci., 71, 1 (2013).   DOI
6 N. Winzer, A. Atrens, W. Dietzel, G. Song, K. U. Kainer, Mater. Sci. Eng. A, 472, 97 (2008).   DOI
7 R. G. Song, C. Blawert, W. Dietzel, A. Atrens, Mater. Sci. Eng. A, 399, 308 (2005).   DOI
8 N. Winzer, A. Atrens, W. Dietzel, G. Song, K. U. Kainer, Mater. Sci. Eng. A, 466, 18 (2007).   DOI
9 B. S. Padekar, V. S. Raja, R. K. S. Raman, L. Paul, Mater. Sci. Forum, 690, 361 (2011).
10 M. A. Timonova, In: I. A. Levin, ed., Intercrystalline corrosion and corrosion of metals under stress, Great Britain (1962).
11 R. S. Stampella, R. P. M. Procter, V. Ashworth, Corros. Sci., 24, 325 (1984).   DOI
12 V. C. Petersen, J. Metals, 23, 40 (1971).
13 ASTM STP 397, S. P. Rideout, M. R. Louthan, Jr., C.L. Selby, p. 137 (1966).
14 R. G. Lingwall, E. J. Ripling, NASA Technical note CR-88979 (1967).
15 M. Garfinkle, Metal. Trans., 4, 1677 (1973).   DOI
16 ASTM STP 397, V. C. Petersen, H. B. Bomberger, p. 80 (1966).
17 R. S. Ondrejcin, Metal. Trans., 1, 3031 (1970).
18 ASTM STP 397, A. J. Hatch, H. W. Rosenberg, E. F. Erbin, p. 122 (1966).
19 R. S. Ondrejcin, C. L. Selby, S. P. Rideout, NASA Technical note CR-87817 (1967).
20 M. Encrenaz, P. Faure, J. A. Petit, Corros. Sci., 40, 939 (1998).   DOI
21 R. K. Dinnappa, Key Eng. Mat., 20-28, 2255 (1988).
22 ASTM STP 397, R. V. Turley, C. H. Avery, p. 1 (1966).
23 M. W. Mahoney, A. S. Tetelman, Metal. Trans., 7A, 1549 (1976).
24 M. D. Pustode, B. Dewangan, V. S. Raja, N. Paulose, Mater. Sci. Eng. A (Communicated).
25 T. Chevrot, Ph. D. Thesis, Cranfield University (1994).
26 M. D. Pustode, V. S. Raja, N. Paulose, Corros. Sci., 82, 191 (2014).   DOI
27 D. Najjar, T. Magnin, T. J. Warner, Mater. Sci. Eng. A, 238, 293 (1997).   DOI
28 M. Bobby Kannan, V. S. Raja, J. Mater. Sci., 201, 5458 (2007).