Browse > Article
http://dx.doi.org/10.14773/cst.2010.9.2.057

Relationship Between the Initiation and Propagation of SCC and the Electrochemical Noise of Alloy 600 for the Steam Generator Tubing of Nuclear Power Plants  

Kim, Y.S. (The Center for Green Materials Technology, School of Advanced Materials Engineering, Andong National University)
Nam, H.S. (HanShin S-Meca)
Kwon, Y.H. (The Center for Green Materials Technology, School of Advanced Materials Engineering, Andong National University)
Kim, S.W. (Korea Atomic Energy Research Institute)
Kim, H.P. (Korea Atomic Energy Research Institute)
Chang, H.Y. (Korea Power Engineering Company)
Publication Information
Corrosion Science and Technology / v.9, no.2, 2010 , pp. 57-66 More about this Journal
Abstract
Since nuclear power plants are being operated under high temperature and high pressure, on-line monitoring technique to detect corrosion could be more effective than off-line method in shut-off period. In this operating condition, electrochemical noise method may be suitable to monitor the corrosion. This paper aims the analysis on the relation between the cracking and electrochemical noise signal of Alloy 600 under U-bending. When electrochemical noise monitoring technique was used during SCC test, it was judge to be obvious that if cracks generate, its generation can be detected by electrochemical current noise. Cracking-related noise was defined as the noise showing 5~10 times greater than the average value of background noise bands. On the base of crack noise, crack initiation time was determined. From SCC test and electrochemical noise monitoring in $25^{\circ}C$, 0.1 M $Na_2S_4O_6$ solution (Reverse U-Bended Alloy 600 SE+), average crack initiation time was obtained as 9,046 seconds and from its initiation time, it could be defined that net crack propagation rate is the crack length divided by ${\Delta}T$(= total test period - crack initiation time). Therefore, average net crack propagation rate was obtained to be $1.18{\times}10^{-9}\;m/s$.
Keywords
alloy 600; stress-corrosion cracking; crack initiation time; crack propagation rate; electrochemical noise;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Mansfeld, Z. Sun, and C. H. Hsu, Corros. Sci., 43, 341 (2001).   DOI   ScienceOn
2 M. C. Tsai, W. T. Tsai. and J. T. Lee, Corros. Sci., 34, 741 (1993).   DOI   ScienceOn
3 F. Mansfcld, L. T. Han, C. C. Lee, C. Chen, G. Zhang, and H. Xiao, Corros. Sci., 39, 255 (1997).   DOI   ScienceOn
4 C. C. Lee and F. Mansfeld, Corros. Sci., 40, 959 (1998).   DOI   ScienceOn
5 F. Mansfeld, C. C. Lee, and G. Zhang, Electrochim. Acta, 43, 435 (1998).   DOI   ScienceOn
6 H. P. Kim, C. Y. Oh, S. S. Hwang, I. H. Kuk, and J. S. Kim, J. Corros Sci. Soc. of Kor., 27, 491 (1998).
7 H. Y. Ha, Master's thesis, Korea Advanced Institute of Science and Technology, Daejeon, Korea (2003).
8 H. S. Chung and I. H. Kuk, J. Corros Sci. Soc. of Kor., 25, 391 (1996).
9 J. R Keams, J. R. Scully, P. R Roberge, D. L. Reichert, and J. L. Dawson, Eds., American Society for Testing and Materials, ASTM STP 1227, ASTM (1996).
10 S. S. Hwang, M. K. Jung, J. Park, and H. P. Kim, Corros. Sci. Tech., 8, 188 (2009) .
11 D. H. Hur, J. Kim, D. H. Lee, Y. S. Kim, and J. S. Kim, J. Corros Sci. Soc. of Kor., 29, 108 (2000).
12 Y. R. Yoo, h. Y. Chang, Y. S. Park, Y. B. Park, T. J. Chung, and Y. S. Kim, Mater. Sci. Forum, 475, 4227 (2005).
13 S. S. Hwang, J. S. Kim, K.. E. Kasza, and J. Park, Corros. Sci. Tech. , 3. 233 (2004).
14 E. H. Lee, K. M. Kim, and U. C. Kim, Mater. Sci. .Eng., A449, 330 (2007).
15 S. S. Hwang, D. J. Kim, Y. S. Lim, J. S. Kim, J. Park, and H. P. Kim, Corros. Sci. Tech., 7, 187 (2008).
16 S. S. Hwang, Corros. and Protect., 6, 65 (2007).
17 J. H. Kim, C. B. Bahn, and L, S, Hwang, Corros. Sci. Tech., 3, 198 (2004).
18 S. S. Hsu, S. C. Tsai, J. J. Kai , and C. H. Tsai, J. Nucl. Mater., 184, 97 (1991).   DOI   ScienceOn
19 F. Mansfeld, Z. Sun, and C. H. Hsu, Elecrrochim. Acta, 46. 3651 (2001).   DOI   ScienceOn
20 M. Leban, V. Dolecek, and A. Legat, Corros. Sci., 56, 921 (2000).   DOI   ScienceOn
21 D. A. Eden, J. L. Dawson and D. G John : UK Patent App.861158, US Patent 5139627, (1986).
22 W. T. Tsai, M. J. Sheu, and J. T. Lee, Corros. Sci., 38, 33 (1996).   DOI   ScienceOn
23 J. J. Kim, Corros. Sci. Tech., 3, 14 (2004).
24 D. S. Seo, Master's thesis, Ulsan University, Ulsan, Korea (2005).
25 Y. J. Tan, S. Bailey, and B. Kinsella, Corros. Sci., 40, 513 (1998).   DOI   ScienceOn