Browse > Article

Orientation Dependent Directed Etching of Aluminum  

Lee, Dong Nyung (School of Materials Science and Engineering, Seoul National University)
Seo, Jong Hyun (Department of Materials Science & Engineering, Hankuk Aviation)
Publication Information
Corrosion Science and Technology / v.8, no.3, 2009 , pp. 93-102 More about this Journal
Abstract
The direct-current electroetching of high purity aluminum in hot aqueous-chloride solution produces a high density of micrometer-wide tunnels whose walls are made up of the {100} planes and penetrate aluminum in the <100> directions at rates of micrometer per second. In the process of the alternating-current pitting of aluminum, cathodic polarization plays an important role in the nucleation and growth of the pits during the subsequent polarization. The direct-current tunnel etching and alternating-current etching of aluminum are basically related to the formation of poorly crystallized or amorphous passive films. If the passive film forms on the wall, a natural misfit exists between the film and the aluminum substrate, which in turn gives rise to stress in both the film and the substrate. Even though the amorphous films do not have directed properties, their stresses are influenced by the substrate orientation. The films on elastically soft substrate are likely to be less stressed and more stable than those on elastically hard substrate. The hardest and softest planes of aluminum are the {111} and {100} planes, respectively. Therefore, the films on the {111} substrates are most likely to be attacked, and those on the {100} substrates are least likely to be attacked. For the tunnel etching, it follows that the tunnel walls tend to consist of the {100} planes. Meanwhile, the tunnel tip, where active corrosion takes place, tend to be made of four closely packed {111} planes in order to minimize the surface energy, which gives rise to the <100> tunnel etching.
Keywords
aluminum; directed etching; direct-current electroetching; direct-current tunnel etching; alternating-current pitting;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. H. Seo and D. N. Lee, J. Electrochem. Soc., 150, B329 (2003)   DOI   ScienceOn
2 M. Yasuda, F. Weinberg, and D. Tromans, J. Electrochem. Soc., 137, 3708 (1990)   DOI
3 K. Fukuoka and N. Ohsawa, Sumitomo Light Metal Technical Reports, 35, 90 (1994)
4 K. R. Hebert and R. C. Alkire, J. Electrochem. Soc., 135, 2447 (1988)   DOI   ScienceOn
5 C. K. Dyer and R. S. Alwitt, J. Electrochem. Soc., 128, 300 (1981)   DOI   ScienceOn
6 J. Tousek, Localized Corrosion of Metals, Trans Tech Publications, Switzerland (1985)
7 G. M. Treacy and C. B. Breslin, Electrochim. Acta, 43, 1715 (1998)   DOI   ScienceOn
8 J. H. Seo and D. N. Lee, Corros. Sci. Tech., 31, 291 (2002)
9 J. H. Seo, J.-H. Ryu, and D. N. Lee, J. Electrochem. Soc., 150, B433 (2003)   DOI   ScienceOn
10 C.-F. Lin and K. R. Hebert, J. Electrochem. Soc., 137, 3723 (1990)   DOI
11 W. Vedder and D. A. Vermile, Electrochim Acta, 65, 567 (1969)
12 H. Takahashi, K. Hujiwara, and M. Seo, Corros. Sci., 36, 689 (1994)   DOI   ScienceOn
13 H. Takahashi, Y. L'mehara, and T. Miyamamoto, J. Surf. Fin. Jpn., 38, 67 (1987)
14 N. F. Jackson, Electrocomponent Sci. technology, 2, 33 (1975)   DOI   ScienceOn
15 R. S. Alwitt, H. Uchi, T. R. Beck, and R. C. Alkire, J. Electrochem. Soc., 138, 13 (1984)   DOI
16 P. M. Sutton, Phys. Rev., 91, 816 (1953)   DOI
17 D. N. Lee, Mater. Sci. Forum, 408 75 (2002)   DOI
18 D. N. Lee, Thin Solid Films, 434, 183 (2003)   DOI   ScienceOn
19 R. K. Hart, Proc. Roy. Soc. London. Ser., A 236, 68 (1956)   DOI
20 R. K. Hart, Trims Faraday Soc., 53, 1020 (1957)   DOI
21 J.-H. Jeong, C.-H. Choi, and D. N. Lee, J. Mater. Sci., 31, 5811 (1996)   DOI   ScienceOn
22 R. S. Alwitt, J. Electrochem. Soc., 118, 1730 (1971)   DOI
23 C.-F. Lin and K. R. Hebert, J. Electrochem. Soc., 141, 104 (1994)   DOI   ScienceOn