Browse > Article

Binary Compound Formation upon Copper Dissolution: STM and SXPS Results  

Hai, N.T.M. (Institute of Physical and Theoretical Chemistry, University of Bonn)
Huemann, S. (Institute of Physical and Theoretical Chemistry, University of Bonn)
Hunger, R. (Department of Matrerial Science, Technical University of Darmstadt)
Jaegermann, W. (Department of Matrerial Science, Technical University of Darmstadt)
Broekmann, P. (Institute of Physical and Theoretical Chemistry, University of Bonn)
Wandelt, K. (Institute of Physical and Theoretical Chemistry, University of Bonn)
Publication Information
Corrosion Science and Technology / v.6, no.4, 2007 , pp. 198-205 More about this Journal
Abstract
The initial stages of electrochemical oxidative CuI film formation on Cu(111), as studied by means of Cyclic Voltammetry (CV), in-situ Scanning Tunneling Microscopy (STM) and ex-situ Synchrotron X-ray Photoemission Spectroscopy (SXPS), indicate a significant acceleration of copper oxidation in the presence of iodide anions in the electrolyte. A surface confined supersaturation with mobile CuI monomers first leads to the formation of a 2D-CuI film via nucleation and growth of a Cu/I-bilayer on-top of a pre-adsorbed iodide monolayer. Structurally, this 2D-CuI film is closely related to the (111) plane of crystalline CuI (zinc blende type). Interestingly, this film causes no significant passivation of the copper surface. In an advanced stage of copper dissolution a transition from the 2D- to a 3D-CuI growth mode can be observed.
Keywords
copper halides; anodic film formation; in-situ STM; surface phase transitions;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Wilms, M. Kruft, G. Bermes, and K. Wandelt, Rev. Sci. Instr., 70, 3641 (1999)
2 P. Broekmann, M. Wilms, M. Arenz, A. Spaenig, K. Wandelt in K. Wandelt, and S. Thurgate, (Eds.) 'Solid LiquidInterfaces, Macroscopic Phenomena - Microscopic Understanding' Topics in Applied Physics, 85, p.141, Springer (2003)
3 D.E. Irish, L. Stolberg, and D.W. Shoesmith, Surf Sci., 158, 238 (1985)
4 P.M. Vereecken, R.A. Binstead, H. Deligianni, and P.C. Andricacos, IBM J. Res. & Dev., 49, 3 (2005)
5 M. Arenz, P. Broekmann, M. Lennartz, E. Vogler, and K. Wandelt, Phys. Stat. Sol. A, 187, 63 (2001)   DOI   ScienceOn
6 P. Broekmann, N.T.M. Hai, and K. Wandelt, J. Appl. Electrochem., 36, 1241 (2006)
7 M. Wilms, P. Broekmann, C. Stuhlmann, and K. Wandelt, Surf Sci., 416, 121 (1998)
8 M. Lennartz, M. Arenz, P. Broekmann, Ch. Stuhlmann, and K. Wandelt, Surf Sci., 442, 215 (1999)
9 J. Kunze, V. Maurice, L.H. Klein, H.H. Strehblow, and P. Marcus, J. Electroanal. Chem., 554-555, 113 (2003)
10 P. Broekmann, M. Wilms, M. Kruft, C. Stuhlmann, and K. Wandelt, J. Electroanal. Chem., 467, 307 (1999)
11 J. Inukai, Y. Osawa, and K. Itaya, J. Phys. Chem. B, 102, 10034 (1998)
12 B. Obliers, P. Broekmann, and K. Wandelt, J. Electroanal. Chem., 554-555, 183 (2003)
13 J. Kunze, V. Maurice, L.H. Klein, H.H. Strehblow, and P. Marcus, Corr. Sci., 46, 245 (2004)
14 P. Broekmann, M. Wilms, and K. Wandelt, Surf Rev. Lett., 6, 907 (1999)
15 T.P. Moffat, D. Wheeler, M.D. Edelstein, and D. Josell, IBM J. Res. & Dev., 49, 19 (2005)
16 P. Broekmann, N.T.M. Hai, and K. Wandelt, Surf Sci., 600, 3971 (2006)   DOI   ScienceOn
17 U. Bertocci, Electrochim. Acta, 11, 1261 (1966)
18 T. Mayer, M.V. Lebedev, R. Hunger, and W. Jaegermann, Applied Surf Sci., 252, 31 (2005)
19 B.Y. Andryushechkin, K.N. Eltsov, and Y.M. Shevlyuga, Surf Sci., 566-568, 203 (2004)   DOI   ScienceOn
20 W.H. Li, J.H. Ye, S.F.Y. Li, and R.J. Nichols, Surf Sci., 449, 207 (2000)
21 P.C. Andricacos, C. Uzoh, J.O. Dukovic, J. Horkans, and H. Deligiani, IBM J. Res. & Dev., 42, 567 (1998)