Browse > Article
http://dx.doi.org/10.1007/s40069-013-0045-0

Effect of Metakaolin Content on the Properties of High Strength Concrete  

Dinakar, P. (School of Infrastructure, Indian Institute of Technology)
Sahoo, Pradosh K. (School of Infrastructure, Indian Institute of Technology)
Sriram, G. (School of Infrastructure, Indian Institute of Technology)
Publication Information
International Journal of Concrete Structures and Materials / v.7, no.3, 2013 , pp. 215-223 More about this Journal
Abstract
This study presents the effect of incorporating metakaolin (MK) on the mechanical and durability properties of high strength concrete for a constant water/binder ratio of 0.3.MK mixtures with cement replacement of 5, 10 and 15 % were designed for target strength and slump of 90 MPa and $100{\pm}25mm$. From the results, it was observed that 10 % replacement level was the optimum level in terms of compressive strength. Beyond 10 %replacement levels, the strength was decreased but remained higher than the control mixture. Compressive strength of 106 MPa was achieved at 10 % replacement. Splitting tensile strength and elastic modulus values have also followed the same trend. In durability tests MK concretes have exhibited high resistance compared to control and the resistance increases as the MK percentage increases. This investigation has shown that the local MK has the potential to produce high strength and high performance concretes.
Keywords
metakaolin; strength; elastic modulus; permeability; absorption;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abbas, R., Abo-El-Enein, S. A., & Ezzat, E. S. (2010). Properties and durability of metakaolin blended cements: Mortar and concrete. Materiales De Construccion, 60, 33-49.
2 Abdul, R. H., & Wong, H. S. (2005). Strength estimation model for high-strength concrete incorporating metakaolin and silica fume. Cement Concrete Research, 35(4), 688-695.   DOI   ScienceOn
3 ASTM C. (2006a). Standard test method for density, absorption, and voids in hardened concrete, 642. Philadelphia, PA: Annual Book of ASTM Standards.
4 ASTM C. (2006b). Standard test method for electrical indication of concrete's ability to resist chloride ion penetration, 1202. Philadelphia, PA: Annual Book of ASTM Standards.
5 ASTM C. (2006c). Standard test method for static modulus of elasticity and poisson's ratio of concrete in compression, 469. Philadelphia, PA: Annual Book of ASTM Standards.
6 Badogiannis, E., & Tsivilis, S. (2009). Exploitation of poor Greek kaolins: Durability of metakaolin concrete. Cement & Concrete Composites, 31(2), 128-133.   DOI   ScienceOn
7 Bai, J., Wild, S., & Sabir, B. B. (2002). Sorptivity and strength of air cured and water cured PC-PFA-MK concrete and the influence of binder composition on carbonation depth. Cement and Concrete Research, 32(11), 1813-1821.   DOI   ScienceOn
8 Basu, P. C. (2003). High performance concrete. In Proceedings INAE national seminar on engineered building materials and their performance (pp. 426-450).
9 Basu, P. C., Mavinkurve, S., Bhattacharjee, K. N., Deshpande, Y., & Basu, S. (2000). High reactivity metakaolin: A supplementary cementitious material. In Proceedings ICIAsian conference on ecstasy in concrete, 20-22 Nov, Bangalore, India (pp. 237-436).
10 Boddy, A., Hooton, R. D., & Gruber, K. A. (2001). Long-term testing of the chloride-penetration resistance of concrete containing high-reactivity metakaolin. Cement and Concrete Research, 31, 759-765.   DOI   ScienceOn
11 BS EN-12390-8. (2000). Depth of penetration of water under pressure. British Standards Institution.
12 CEB-FIP. (1989). Diagnosis and assessment of concrete structures- state of the art report. CEB Bulletin, 192, 83-85.
13 Dhir, R. K., & Yap, A. W. F. (1984). Superplasticized flowing concrete: durability. Magazine of Concrete Research, 36(127), 99-111.   DOI   ScienceOn
14 DIN 1045. (1988). Beton und Stahlbeton. Koln, Germany: Beton Verlag GMBH.
15 Dinakar, P. (2012). Design of self compacting concrete with fly ash. Magazine of Concrete Research, 64(5), 401-409.   DOI   ScienceOn
16 Ding, Z., Zhang, D., & Yu, R. (1999). High strength composite cement. China Building & Material Science Technology, 1, 14-17.
17 Haque, M. N., & Kayali, O. (1998). Properties of high strength concrete using a fine fly ash. Cement and Concrete Research, 28(10), 1445-1452.   DOI   ScienceOn
18 Dvorkin, L., Bezusyak, A., Lushnikova, N., & Ribakov, Y. (2012). Using mathematical modelling for design of self compacting high strength concrete with metakaolin admixture. Construction and Building Materials, 37, 851-864.   DOI   ScienceOn
19 Gruber, K. A., Ramlochan, T., Boddy, A., Hooton, R. D., & Thomas, M. D. A. (2001). Increasing concrete durability with high-reactivity metakaolin. Cement & Concrete Composites, 23, 479-484.   DOI   ScienceOn
20 Guneyisi, E., Gesoglu, M., & Mermerdas, K. (2008). Improving strength, drying shrinkage, and pore structure of concrete using metakaolin. Materials and Structures, 41, 937-949.   DOI
21 IS. (1987). Specification for 53 grade ordinary Portland cement, 12269. New Delhi: Bureau of Indian Standards.
22 Khatib, J. M. (2008). Metakaolin concrete at a low water to binder ratio. Construction and Building Materials, 22(8), 1691-1700.   DOI   ScienceOn
23 Kim, H. S., Lee, S. H., & Moon, H. Y. (2007). Strength properties and durability aspects of high strength concrete using Korean metakaolin. Construction and Building Materials, 21, 1229-1237.   DOI   ScienceOn
24 Mehta, P. K., & Monteiro, P. J. (1999). Concrete: microstructure, properties, and materials. Delhi, India: Indian Concrete Institute.
25 Nehdi, R. M., Mindness, S., & Aitcin, P. C. (1998). Rheology of high performance concrete: Effect of ultrafine particles. Cement and Concrete Research, 28(5), 687-697.   DOI   ScienceOn
26 Neville, A. M. (1997). Concrete with particular properties. In Properties of concrete (pp. 653-672). Harlow, UK: Longman
27 Poon, C. S., Lam, L., Kou, S. C., Wong, Y. L., & Wong, R. (2001). Rate of pozzolanic reaction of metakaolin in highperformance cement pastes. Cement and Concrete Research, 31(9), 1301-1306.   DOI   ScienceOn
28 Pal, S. C., Mukherjee, A., & Pathak, S. R. (2001) Development of high performance concrete composites using high volume cement replacement with supplementary pozzolanic and cementitioius solid waste. In S. K. Kaushik (Ed.), Proceedings of SEC, recent developments in structural engineering (pp. 215-229). New Delhi, India: Phoenix publishing house Pvt Ltd.
29 Parande, A. K., Ramesh Babu, B., Karthik, M. A., Kumar, K. K., & Palaniswamy, N. (2008). Study on strength and corrosion performance for steel embedded in metakaolin blended concrete/mortar. Construction and Building Materials, 22(3), 127-134.   DOI   ScienceOn
30 Patil, B. B., & Kumbhar, P. D. (2012). Strength and durability properties of high performance concrete incorporating high reactivity metakaolin. International Journal of Modern Engineering Research, 2(3), 1099-1104.
31 Rasiah, A. R. (1983) High strength concrete for developing countries. In: Proceedings of the first international conference on concrete technology in developing countries, Amman, Jordan.
32 Schiessl, P. (1988). Corrosion of steel in concrete, Report of the technical committee 60-CSC, RILEM. London, UK: Chapman and Hall.
33 Tiwari, A. K., & Bandyopadhyay, P. (2003) High performance concrete with Indian metakaolin. In International symposium on innovative world of concrete, 19-21 September. Pune: Indian Concrete Institute.
34 Wild, S., & Khatib, J. M. (1997). Portlandite consumption of metakaolin cement Pastes and mortars. Cement and Concrete Research, 27(1), 137-146.   DOI   ScienceOn
35 Wild, S., Khatib, J. M., & Jones, A. (1996). Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete. Cement and Concrete Research, 26(10), 1537-1544.   DOI   ScienceOn
36 Yogendran, V., Langan, B. W., Haque, M. N., & Ward, M. A. (1987). Silica fume in high strength concrete. ACI Materials Journal, 84, 124.
37 Sabir, B. B., Wild, S., & Bai, J. (2001). Metakaolin and calcined clays as pozzolans for concrete: A review. Cement & Concrete Composites, 23, 441-454.   DOI   ScienceOn
38 Zain, M. F. M., Safiuddin, M. D., & Mahmud, H. (2000). Development of high performance concrete using silica fume at relatively high water-binder ratios. Cement and Concrete Research, 30(9), 1501-1505.   DOI   ScienceOn