Browse > Article
http://dx.doi.org/10.1080/19768354.2011.642084

Anxiolytic effects of an acetylcholinesterase inhibitor, physostigmine, in the adult zebrafish  

Cho, Han-Eul (Department of Biological Sciences, Inha University)
Lee, Chang-Joong (Department of Biological Sciences, Inha University)
Choi, Ji-Seon (Department of Statistics, Inha University)
Hwang, Jin-Soo (Department of Statistics, Inha University)
Lee, Yun-Kyoung (Department of Biological Sciences, Inha University)
Publication Information
Animal cells and systems / v.16, no.3, 2012 , pp. 198-206 More about this Journal
Abstract
Anxiety in zebrafish can be determined by examining their bottom-dwelling and light-avoidance behavior. This study determines the effects of physostigmine and scopolamine on anxiety in zebrafish by measuring swimming frequency for three horizontal layers and three vertical columns of a water test tank illuminated by a light source located above the central surface of the tank. In the 1 h session, zebrafish in the control group preferred the bottom layer the most and the center column the least. Zebrafish treated with 2-20 ${\mu}M$ physostigmine were more likely to prefer the to layer than controls, and there were significant pairwise differences between physostigmine-treated zebrafish and controls, indicating the anxiolytic effect of physostigmine. Further, 10 and $20{\mu}M$ physostigmine-treated zebrafish no longer avoided the center column. Scopolamine had no anxiolytic effect on bottom-dwelling and light-avoidance behaviors but suppressed the anxiolytic effect of physostigmine. In terms of their preference for various zones formed by layers and columns, zebrafish in the control group preferred the bottom left and right zones the most. Physostigmine had a positive effect on the preference for the top center zone, which was suppressed by scopolamine pretreatment. The results suggest that the level of anxiety in zebrafish can be reduced by activating acetylcholinergic neurotransmitter systems, which is mediated in part by muscarinic receptors.
Keywords
anxiety; physostigmine; scopolamine; Danio rerio; acetylcholinesterase;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Pepeu G, Giovannini MG. 2009. Cholinesterase inhibitors and beyond. Curr Alzheimer Res. 6:86-96.   DOI
2 Schliebs R. 2005. Basal forebrain cholinergic dysfunction in Alzheimer's disease - interrelationship with beta-amyloid, inflammation and neurotrophin signaling. Neurochem Res. 30:895-908.   DOI
3 Sienkiewicz-Jarosz H, Czlonkowska AI, Siemiatkowski M, Maciejak P, Szyndler J, Plaznik A. 2000. The effects of physostigmine and cholinergic receptor ligands on novelty- induced neophobia. J Neural Transm. 107: 1403-1412.   DOI
4 Sienkiewicz-Jarosz H, Maciejak P, Krzascik P, Czlonkowska AI, Szyndler J, Bidzinski A, Kostowski W, Plaznik A. 2003. The effects of central administration of physostigmine in two models of anxiety. Pharmacol Biochem Behav. 75:491-496.   DOI
5 Smythe JW, Murphy D, Bhatnagar S, Timothy C, Costall B. 1996. Muscarinic antagonists are anxiogenic in rats tested in the black-white box. Pharmacol Biochem Behav. 54:57-63.   DOI
6 Wetzels RB, Zuidema SU, de Jonghe JF, Verhey FR, Koopmans RT. 2010. Course of neuropsychiatric symptoms in residents with dementia in nursing homes over 2-year period. Am J Geriatr Psychiatry. 18:1054-1065.   DOI
7 Wong K, Elegante M, Bartels B, Elkhayat S, Tien D, Roy S, Goodspeed J, Suciu C, Tan J, Grimes C, et al. 2010. Analyzing habituation responses to novelty in zebrafish (Danio rerio). Behav Brain Res. 208:450-457.   DOI
8 Zarrindast MR, Sroushi A, Bananej M, Vousooghi N, Hamidkhaniha S. 2011. Involvement of the dopaminergic receptors of the rat basolateral amygdala in anxiolyticlike effects of the cholinergic system. Eur J Pharmacol. doi:10.1016/j.ejphar.2011.09.168.
9 Auld DS, Kornecook TJ, Bastianetto S, Quirion R. 2002. Alzheimer's disease and the basal forebrain cholinergic system: Relations to beta-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol. 68:209-245.   DOI
10 Bencan Z, Levin ED. 2008. The role of alpha7 and alpha4beta2 nicotinic receptors in the nicotine-induced anxiolytic effect in zebrafish. Physiol Behav. 95:408-412.   DOI
11 Benetti F, Mello PB, Bonini JS, Monteiro S, Cammarota M, Izquierdo I. 2009. Early postnatal maternal deprivation in rats induces memory deficits in adult life that can be reversed by donepezil and galantamine. Int J Dev Neurosci. 27:59-64.   DOI
12 Cachat J, Stewart A, Grossman L, Gaikwad S, Kadri F, Chung KM, Wu N, Wong K, Roy S, Suciu C, et al. 2010. Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nat Protoc. 5:1786-1799.   DOI
13 Champagne DL, Hoefnagels CC, de Kloet RE, Richardson MK. 2010. Translating rodent behavioral repertoire to zebrafish (Danio rerio): Relevance for stress research. Behav Brain Res. 214:332-342.   DOI
14 Choi YS, Lee CJ, Kim YH. 2011. MK-801-induced learning impairments reversed by physostigmine and nicotine in zebrafish. Anim Cells Syst. doi:10.1080/19768354.2011.555124.
15 Gerlai R, Lahav M, Guo S, Rosenthal A. 2000. Drinks like a fish: Zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol Biochem Behav. 67:773-782.   DOI
16 Clemente D, Porteros A, Weruaga E, Alonso JR, Arenzana FJ, Aijon J, Arevalo R. 2004. Cholinergic elements in the zebrafish central nervous system: Histochemical and immunohistochemical analysis. J Comp Neurol. 474: 75-107.   DOI
17 Dong H, Csernansky CA, Martin MV, Bertchume A, Vallera D, Csernansky JG. 2005. Acetylcholinesterase inhibitors ameliorate behavioral deficits in the Tg2576 mouse model of Alzheimer's disease. Psychopharmacology (Berl) 181:145-152.   DOI
18 Gerlai R. 2010. Zebrafish antipredatory responses: A future for translational research? Behav Brain Res. 207:223-231.   DOI
19 Kim YH, Lee Y, Kim D, Jung MW, Lee CJ. 2010. Scopolamine-induced learning impairment reversed by physostigmine in zebrafish. Neurosci Res. 67:156-161.   DOI
20 Levin ED, Bencan Z, Cerutti DT. 2007. Anxiolytic effects of nicotine in zebrafish. Physiol Behav. 90:54-58.   DOI
21 Lopez-Patino MA, Yu L, Cabral H, Zhdanova IV. 2008. Anxiogenic effects of cocaine withdrawal in zebrafish. Physiol Behav. 93:160-171.   DOI
22 Maximino C, de Brito TM, Colmanetti R, Pontes AA, de Castro HM, de Lacerda RI, Morato S, Gouveia A. Jr 2010a. Parametric analyses of anxiety in zebrafish scototaxis. Behav Brain Res. 210:1-7.   DOI
23 Maximino C, Marques de Brito T, Dias CA, Gouveia A. Jr, Morato S. 2010b. Scototaxis as anxiety-like behavior in fish. Nat Protoc. 5:209-216.   DOI
24 Park E, Lee Y, Kim Y, Lee CJ. 2008. Cholinergic modulation of neural activity in the telencephalon of the zebrafish. Neurosci Lett. 439:79-83.   DOI