Browse > Article
http://dx.doi.org/10.1080/19768354.2011.620623

Food web structure in a $Salix$ $subfragilis$ dominated wetland in Hangang estuary using stable isotopes and fatty acid biomarkers  

Han, Dong-Uk (School of Biological Sciences, Seoul National University)
Yang, Dong-Woo (Department of Biological Science, Ajou University)
Lee, Eun-Joo (School of Biological Sciences, Seoul National University)
Park, Sang-Kyu (Department of Biological Science, Ajou University)
Publication Information
Animal cells and systems / v.16, no.2, 2012 , pp. 162-171 More about this Journal
Abstract
We investigated food webs of a $Salix$ $subfragilis$-dominated wetland in the Janghang wetland in the Hangang estuary, which is very close to the Demilitarized Zone, along the west coast of Korea. Our study focused on understanding sesarmine crab ($Sesarma$ $dehaani$)-related food webs in a $S.$ $subfragilis$ forest. For our study, we used carbon and nitrogen stable isotopes and fatty acid biomarkers. We collected samples of plants, animals, and detrital sediment from four quadrats ($5{\times}5m^2$) set in the $S.$ $subfragilis$ community. Samples were collected from September 2006 to June 2009, except during the winter hibernation period of $S.$ $dehaani$. In the wet season, the sediment showed relatively high ${\delta}^{13}C$ and low ${\delta}^{15}N$ signatures compared with relatively low ${\delta}13C$ and high ${\delta}15N$ signatures in the dry season. Mature $S.$ $dehaani$ appeared to feed on fresh leaves and other carbon sources, such as immature individuals or fish, in addition to detrital sediment, which appeared to be the main carbon source for immature crabs. Principal component analysis of fatty acid biomarkers of $S.$ $dehaani$ showed a clear difference between immature individuals (10-30 mm) and mature ones (larger than 30 mm), indicating that the main food source for immature crabs was detrital sediment, whereas mature crabs foraged plants in addition to consuming detrital sediment. On the basis of our results from stable isotope and fatty acid analyses, mature $S.$ $dehaani$ appeared to feed on detrital sediment and fresh leaves of $S.$ $subfragilis$ in summer in addition to engaging in cannibalism of immature individuals.
Keywords
fatty acid biomarkers; food webs; Salix subfragilis; Sesarma dehaani; stable isotopes;
Citations & Related Records
연도 인용수 순위
1 Meziane T, Sanabe MC, Tsuchiya M. 2002. Role of fiddler crabs of a subtropical intertidal flat on the fate of sedimentary fatty acids. J Exp Mar Biol Ecol. 270:191-201.   DOI
2 Odum WE, Zieman JC, Heald EJ. 1973. The importance of vascular plant detritus to estuaries. In: Chabreck RH. Proceedings of the Costal Marsh and Estuary Management Symposium; July 10-12, 1972; Louisiana State University, Baton Rouge, Louisiana. Baton Rouge, Louisiana: Louisiana State University. p. 91-135.
3 Poerschmann J, Spijkerman E, Langer U. 2004. Fatty acid patterns in Chlamydomonas sp. as a marker for nutritional regimes and temperature under extremely acidic conditions. Microb Ecol. 48:78-89.   DOI
4 Pond DW, Leakey RJG, Fallick AE. 2006. Monitoring microbial predator-prey interactions: an experimental study using fatty acid biomarker and compound-specific stable isotope techniques. J Plankt Res. 28:419-427.   DOI
5 Ruess L, Tiunov A, Haubert D, Richnow HH, Haggblom MM, Scheu S. 2005. Carbon stable isotope fractionation and trophic transfer of fatty acids in fungal based soil food chains. Soil Biol Biochem. 37:945-953.   DOI
6 Shin PKS, Chan AKY, Lam MHW. 2004. Fatty acids as tracer of trophic relationships in a subtropical mangrove wetland. Kor J Ecol. 27:61-65.   DOI
7 Skov MW, Hartnoll RG. 2002. Paradoxical selective feeding on a low-nutrient diet: why do mangrove crabs eat leaves. Oecologia. 131:1-7.   DOI
8 Suprayudi MA, Takeuchi T, Kamasaki K. 2004. Essential fatty acids for larval mud crab Scylla serrata: implications of lack of the ability to bioconvert C18 unsaturated fatty acids to highly unsaturated fatty acids. Aquaculture. 231:403-416.   DOI
9 ThimdeeW, Deein G, Sangrungruang C, Matsunaga K. 2004. Analysis of primary food sources and trophic relationships of aquatic animals in a mangrove-fringed estuary, Khung Krabaen Bay (Thailand) using dual stable isotope techniques. Wetl Ecol Manag. 12:135-144.   DOI
10 Vander Zanden MJ, Rasmussen JB. 1996. A trophic position model of pelagic food webs: impact on contaminant bioaccumulation in lake trout. Ecol Monogr. 66:451-477.   DOI
11 Vander Zanden MJ, Cabana G, Rasmussen JB. 1997. Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (${\delta}^{15}N$) and literature dietary data. Can J Fish Aquat Sci. 54:1142-1158.   DOI
12 Werner EE, Gilliam JF. 1984. The ontogenic niche and species interactions in size-structured populations. Ann Rev Ecol Syst. 15:393-425.   DOI
13 Wolcott DL, Wolcott TG. 1984. Food quality and cannibalism in the red land crab, Gecarcinus lateralis. Physiol Zool. 57:318-324.   DOI
14 Guest MA, Connolly RM. 2004. Fine-scale movement and assimilation of carbon in saltmarsh and mangrove habitat by resident animals. Aquat Ecol. 38:599-609.   DOI
15 Han D, Yoo JW, Yoo Y, Lee E, Park S. 2010. Aboveground primary productivity of Salix nipponica (subfragilis) and secondary productivity of Sesarma dehaani at Janghang Wetland in Han River Estuary. Kor J Limnol. 43:298-306.
16 Haines EB, Montague CL. 1979. Food sources of estuarine invertebrates analyzed using $^{13}C/^{12}C$ ratios. Ecology. 60:48-56.   DOI
17 Jormalainen V, Shuster SM. 1997. Microhabitat segregation and cannibalism in an endangered freshwater isopod, Thermosphaeroma thermophilum. Oecologia. 111:271-279.   DOI
18 Hessen DA, Leu ES. 2006. Trophic transfer and trophic modification of fatty acids in high Arctic lakes. Freshw Biol. 51:1987-1998.   DOI
19 Inga N, Matthias W, Karen D. 2006. Litter processing and population food intake of the mangrove crab Ucides cordatus in a high intertidal forest in northern Brazil. Estuar Coast Shelf S. 67:239-250.   DOI
20 Jeong G, Park S. 2010. Seasonal and diel abundance and feeding patterns of Chaoborus flavicans in Sang-Chun reservoir. Anim Cells Syst. 14:297-303.   DOI
21 Kattner G, Fricke HSG. 1986. Simple gas-liquid chromatographic method for the simultaneous determination of fatty acids and alcohols in wax esters of marine organisms. J Chromatogr. 361:263-268.   DOI
22 Kiyashko SI, Imbs AB, Narita T, Svetashev VI, Wada E. 2004. Fatty acid composition of aquatic insect larvae Stictochironomus pictulus (Diptera: Chironomidae): evidence of feeding upon methanotrophic bacteria. Comp Biochem Physiol B. 139:705-711.   DOI
23 Kristensen DK, Kristensen E, Mangion P. 2010. Food partitioning of leaf-eating mangrove crabs (Sesarminae): Experimental and stable isotope ($^{13}C$ and $^{15}N$) evidence. Estuar Coast Shelf S. 87:583-590.   DOI
24 Kristensen E. 2008. Mangrove crabs as ecosystem engineers; with emphasis on sediment processes. J Sea Res 59:30-43.   DOI
25 Laughlin RA. 1982. Feeding habits of the blue crab, Callinectes sapidus Rathbun, in the Apalachicola estuary, Florida. Bull Mar Sci. 32:807-822.
26 Lee SY. 1997. Potential trophic importance of the faecal material of the mangrove sesarmine crab Sesarma messa. Mar Ecol Prog Ser. 159:275-284.   DOI
27 Cannicci S, Burrows D, Fratini S, Smith III TJ, Offenberg J, Dahdouh-Guebas F. 2008. Faunal impact on vegetation structure and ecosystem function in mangrove forests: a review. Aquat Bot. 89:186-200.   DOI
28 Linton SM, Greenaway P. 2007. A review of feeding and nutrition of herbivorous land crabs: adaptations to low quality plant diets. J Comp Physiol B. 177:269-286.   DOI
29 Mann KH. 1972. Macrophyte production and detritus food chains in coastal waters. In: Melchioni-Santalini U, Hopton J. Detritus and its role in aquatic ecosystems; Proceedings of and IBP-UNESCO Symposium;1972;Pallanzo, Italy. Memorie Dell'Instituto Italiano di Idrobiologia. 29(S13-16):325-352.
30 Meziane T, Bodineau L, Retiere C, Thoumelin G. 1997. The use of lipid markers to define sources of organic matter in sediment and food web of the intertidal salt-marsh-flat ecosystem of Mont-Saint-Michel Bay, France. J Sea Res. 38:47-58.   DOI
31 Chamberlain PM, Bull ID, Black HIJ, Ineson P, Evershed RP. 2006. Collembolan trophic preferences determined using fatty acid distributions and compound-specific stable carbon isotope values. Soil Biol Biochem. 38:1275-1281.   DOI
32 Creach V, Schricke MT, Bertru G, Marikotti A. 1997. Stable isotopes and gut analyses to determine feeding relationships in saltmarsh macroconsumers. Estuar Coast Shelf S. 44:599-611.   DOI
33 Dalsgaard J, St John M, Kattner G, Muller-Navarra D, Hagen W. 2003. Fatty acid trophic markers in the pelagic marine environment. Adv Mar Biol. 46:225-340.
34 Elliot M, McLusky DS. 2002. The need for definitions in understanding estuaries. Estuar Coast Shelf S. 55: 815-817.   DOI
35 Freire J, Sampedro MP, Gonzalez-Gurriaran E. 1996. Influence of morphometry and biomechanics on diet selection in three portunid crabs. Mar Ecol Prog Ser. 137:111-121.   DOI