Browse > Article

Ligand Recognition by the Toll-like Receptor Family  

Jin, Mi-Sun (Department of Chemistry, Department of Nanoscience and Technoloogy, Korea Advanced Institute of Science and Technology)
Lee, Jie-Oh (Department of Chemistry, Department of Nanoscience and Technoloogy, Korea Advanced Institute of Science and Technology)
Publication Information
Animal cells and systems / v.13, no.1, 2009 , pp. 1-8 More about this Journal
Abstract
Toll-like receptor (TLR) family proteins, type I transmembrane proteins, play a central role in human innate immune response by recognizing common structural patterns in diverse molecules from bacteria, viruses and fungi. Recently four structures of the TLR and ligand complexes have been determined by high resolution x-ray crystallographic technique. In this review we summarize reported structures of TLRs and their proposed activation mechanisms. The structures demonstrate that binding of agonistic ligands to the extracellular domains of TLRs induces homo- or heterodimerization of the receptors. Dimerization of the TLR extracellular domains brings their two C-termini into close proximity. This suggests a plausible mechanism of TLR activation: ligand induces dimerization of the extracellular domains, which enforces juxtaposition of intracellular signaling domains for recruitment of intracellular adaptor proteins for signal initiation.
Keywords
innate immune response; leucine rich repeat; pattern recognition receptor; toll-like receptor; hybrid LRR technique;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Bell JK, Botos I, Hall PR, Askins J, Shiloach J, Segal DM, and Davies DR (2005) The molecular structure of the Toll-like receptor 3 ligand-binding domain. Proc Natl Acad Sci USA 102: 10976-10980   DOI   ScienceOn
2 Choe J, Kelker MS, and Wilson IA (2005) Crystal structure of human toll-like receptor 3 (TLR3) ectodomain. Science 309: 581-585   DOI   PUBMED   ScienceOn
3 Deininger S, Stadelmaier A, von Aulock S, Morath S, Schmidt RR, and Hartung T (2003) Definition of structural prerequisites for lipoteichoic acid-inducible cytokine induction by synthetic derivatives. J Immunol 170: 4134-4138   DOI
4 Dunne A, Ejdeback M, Ludidi PL, O'Neill LA, and Gay NJ (2003) Structural complementarity of Toll/interleukin-1 receptor domains in Toll-like receptors and the adaptors Mal and MyD88. J Biol Chem 278: 41443-41451   DOI   ScienceOn
5 Fujihara M, Muroi M, Tanamoto K, Suzuki T, Azuma H, and Ikeda H (2003) Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: roles of the receptor complex. Pharmacol Ther 100: 171-194   DOI   ScienceOn
6 Gautam JK, Ashish, Comeau LD, Krueger JK, and Smith MF, Jr. (2006) Structural and functional evidence for the role of the TLR2 DD loop in TLR1/TLR2 heterodimerization and signaling. J Biol Chem 281: 30132-30142   DOI   ScienceOn
7 Hioe CE, Qiu H, Chend PD, Bian Z, Li ML, Li J, Singh M, Kuebler P, McGee P, O'Hagan D, Zamb T, Koff W, Allsopp C, Wang CY, and Nixon DF (1996) Comparison of adjuvant formulations for cytotoxic T cell induction using synthetic peptides. Vaccine 14: 412-418   DOI   ScienceOn
8 Kim JI, Lee CJ, Jin MS, Lee CH, Paik SG, Lee H, and Lee JO (2005) Crystal structure of CD14 and its implications for lipopolysaccharide signaling. J Biol Chem 280: 11347-11351   DOI   ScienceOn
9 Kusumoto S, Fukase K, Fukase Y, Kataoka M, Yoshizaki H, Sato K, Oikawa M, and Suda Y (2003) Structural basis for endotoxic and antagonistic activities: investigation with novel synthetic lipid A analogs. J Endotoxin Res 9: 361-366   DOI   PUBMED
10 Miyake K (2003) Innate recognition of lipopolysaccharide by CD14 and toll-like receptor 4-MD-2: unique roles for MD-2. Int Immunopharmacol 3: 119-128   DOI   PUBMED   ScienceOn
11 Alexopoulou L, Holt AC, Medzhitov R, and Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413: 732-738   DOI   ScienceOn
12 Buwitt-Beckmann U, Heine H, Wiesmuller KH, Jung G, Brock R, Akira S, and Ulmer AJ (2005) Toll-like receptor 6-independent signaling by diacylated lipopeptides. Eur J Immunol 35: 282-289   DOI   ScienceOn
13 Erridge C, Bennett-Guerrero E, and Poxton IR (2002) Structure and function of lipopolysaccharides. Microbes Infect 4: 837-851   DOI   ScienceOn
14 Silverstein AM (2003) Darwinism and immunology: from Metchnikoff to Burnet. Nat Immunol 4: 3-6   DOI   PUBMED   ScienceOn
15 Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB, Schroeder L, and Aderem A (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci U S A 97: 13766-13771   DOI   ScienceOn
16 Takeuchi O, Kawai T, Muhlradt PF, Morr M, Radolf JD, Zychlinsky A, Takeda K, and Akira S (2001) Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 13: 933-940   DOI   ScienceOn
17 Texereau J, Chiche JD, Taylor W, Choukroun G, Comba B, and Mira JP (2005) The importance of Toll-like receptor 2 polymorphisms in severe infections. Clin Infect Dis 41 Suppl 7: S408-415   DOI
18 Kobe B and Kajava AV (2001) The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 11: 725-732   DOI   ScienceOn
19 Kajava AV (1998) Structural diversity of leucine-rich repeat proteins. J Mol Biol 277: 519-527   DOI   PUBMED   ScienceOn
20 Romagne F (2007) Current and future drugs targeting one class of innate immunity receptors: the Toll-like receptors. Drug Discov Today 12: 80-87   DOI   ScienceOn
21 Kanzler H, Barrat FJ, Hessel EM, and Coffman RL (2007) Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med 13: 552-559   DOI   ScienceOn
22 Echchannaoui H, Frei K, Schnell C, Leib SL, Zimmerli W, and Landmann R (2002) Toll-like receptor 2-deficient mice are highly susceptible to Streptococcus pneumoniae meningitis because of reduced bacterial clearing and enhanced inflammation. J Infect Dis 186: 798-806   DOI   ScienceOn
23 Han SH, Kim JH, Martin M, Michalek SM, and Nahm MH (2003) Pneumococcal lipoteichoic acid (LTA) is not as potent as staphylococcal LTA in stimulating Toll-like receptor 2. Infect Immun 71: 5541-5548   DOI   ScienceOn
24 Medzhitov R, Preston-Hurlburt P, and Janeway CA, Jr. (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388: 394-397   DOI   PUBMED   ScienceOn
25 Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik SG, Lee H, and Lee JO (2007) Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130: 1071-1082   DOI   ScienceOn
26 Pancer Z and Cooper MD (2006) The evolution of adaptive immunity. Annu Rev Immunol 24: 497-518   DOI   ScienceOn
27 Takeuchi O, Sato S, Horiuchi T, Hoshino K, Takeda K, Dong Z, Modlin RL, and Akira S (2002) Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 169: 10-14   DOI   PUBMED
28 Akira S and Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4: 499-511   DOI   ScienceOn
29 Bell JK, Mullen GE, Leifer CA, Mazzoni A, Davies DR, and Segal DM (2003) Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol 24: 528-533   DOI   ScienceOn
30 Gay NJ and Keith FJ (1991) Drosophila Toll and IL-1 receptor. Nature 351: 355-356   PUBMED
31 Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, and Kimoto M (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189: 1777-1782   DOI   ScienceOn
32 Kobe B and Deisenhofer J (1994) The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci 19: 415-421   DOI   PUBMED   ScienceOn
33 Iwaki D, Nishitani C, Mitsuzawa H, Hyakushima N, Sano H, and Kuroki Y (2005) The CD14 region spanning amino acids 57-64 is critical for interaction with the extracellular Toll-like receptor 2 domain. Biochem Biophys Res Commun 328: 173-176   DOI   ScienceOn
34 Park BS, Song DH, Kim HM, Choi BS, Lee H, and Lee JO (2009) The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature   DOI   ScienceOn
35 Ohto U, Fukase K, Miyake K, and Satow Y (2007) Crystal structures of human MD-2 and its complex with antiendotoxic lipid IVa. Science 316: 1632-1634   DOI   PUBMED   ScienceOn
36 Nunez Miguel R, Wong J, Westoll JF, Brooks HJ, O'Neill LA, Gay NJ, Bryant CE, and Monie TP (2007) A dimer of the Toll-like receptor 4 cytoplasmic domain provides a specific scaffold for the recruitment of signalling adaptor proteins. PLoS ONE 2: e788   DOI   PUBMED
37 Schroder NW, Morath S, Alexander C, Hamann L, Hartung T, Zahringer U, Gobel UB, Weber JR, and Schumann RR (2003) Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J Biol Chem 278: 15587-15594   DOI   ScienceOn
38 Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, Horiuchi T, Tomizawa H, Takeda K, and Akira S (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3: 196-200   DOI   ScienceOn
39 O'Neill LA (2004) TLRs: Professor Mechnikov, sit on your hat. Trends Immunol 25: 687-693   DOI   PUBMED   ScienceOn
40 Viriyakosol S, Tobias PS, Kitchens RL, and Kirkland TN (2001) MD-2 binds to bacterial lipopolysaccharide. J Biol Chem 276: 38044-38051   PUBMED
41 Liu L, Botos I, Wang Y, Leonard JN, Shiloach J, Segal DM, and Davies DR (2008) Structural basis of toll-like receptor 3 signaling with double-stranded RNA. Science 320: 379-381   DOI   PUBMED   ScienceOn
42 Miyake K (2006) Roles for accessory molecules in microbial recognition by Toll-like receptors. J Endotoxin Res 12: 195-204   DOI   PUBMED   ScienceOn
43 Gibbard RJ, Morley PJ, and Gay NJ (2006) Conserved features in the extracellular domain of human toll-like receptor 8 are essential for pH-dependent signaling. J Biol Chem 281: 27503-27511   DOI   ScienceOn
44 Nakata T, Yasuda M, Fujita M, Kataoka H, Kiura K, Sano H, and Shibata K (2006) CD14 directly binds to triacylated lipopeptides and facilitates recognition of the lipopeptides by the receptor complex of Toll-like receptors 2 and 1 without binding to the complex. Cell Microbiol 8: 1899-1909   DOI   ScienceOn
45 West AP, Koblansky AA, and Ghosh S (2006) Recognition and signaling by toll-like receptors. Annu Rev Cell Dev Biol 22: 409-437   DOI   ScienceOn
46 Manukyan M, Triantafilou K, Triantafilou M, Mackie A, Nilsen N, Espevik T, Wiesmuller KH, Ulmer AJ, and Heine H (2005) Binding of lipopeptide to CD14 induces physical proximity of CD14, TLR2 and TLR1. Eur J Immunol 35: 911-921   DOI   ScienceOn
47 Morath S, Geyer A, and Hartung T (2001) Structure-function relationship of cytokine induction by lipoteichoic acid from Staphylococcus aureus. J Exp Med 193: 393-397   DOI   ScienceOn
48 Mullarkey M, Rose JR, Bristol J, Kawata T, Kimura A, Kobayashi S, Przetak M, Chow J, Gusovsky F, Christ WJ, and Rossignol DP (2003) Inhibition of endotoxin response by e5564, a novel Toll-like receptor 4-directed endotoxin antagonist. J Pharmacol Exp Ther 304: 1093-1102   DOI   ScienceOn
49 Beutner KR, Tyring SK, Trofatter KF, Jr., Douglas JM, Jr., Spruance S, Owens ML, Fox TL, Hougham AJ, and Schmitt KA (1998) Imiquimod, a patient-applied immune-response modifier for treatment of external genital warts. Antimicrob Agents Chemother 42: 789-794   PUBMED
50 Gay NJ and Gangloff M (2007) Structure and function of Toll receptors and their ligands. Annu Rev Biochem 76: 141-165   DOI   ScienceOn
51 Triantafilou M, Gamper FG, Haston RM, Mouratis MA, Morath S, Hartung T, and Triantafilou K (2006) Membrane sorting of toll-like receptor (TLR)-2/6 and TLR2/1 heterodimers at the cell surface determines heterotypic associations with CD36 and intracellular targeting. J Biol Chem 281: 31002-31011   DOI   ScienceOn
52 Kim HM, Oh SC, Lim KJ, Kasamatsu J, Heo JY, Park BS, Lee H, Yoo OJ, Kasahara M, and Lee JO (2007a) Structural diversity of the hagfish variable lymphocyte receptors. J Biol Chem 282: 6726-6732   DOI   ScienceOn
53 Latz E, Verma A, Visintin A, Gong M, Sirois CM, Klein DC, Monks BG, McKnight CJ, Lamphier MS, Duprex WP, Espevik T, and Golenbock DT (2007) Ligand-induced conformational changes allosterically activate Toll-like receptor 9. Nat Immunol 8: 772-779   DOI   ScienceOn
54 O'Neill LA and Bowie AG (2007) The family of five: TIRdomain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7: 353-364   DOI   ScienceOn
55 Jin MS and Lee JO (2008) Application of hybrid LRR technique to protein crystallization. BMB Rep 41: 353-357   DOI   PUBMED
56 Kim HM, Park BS, Kim JI, Kim SE, Lee J, Oh SC, Enkhbayar P, Matsushima N, Lee H, Yoo OJ, and Lee JO (2007b) Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell 130: 906-917   DOI   ScienceOn
57 Tanamoto K and Azumi S (2000) Salmonella-type heptaacylated lipid A is inactive and acts as an antagonist of lipopolysaccharide action on human line cells. J Immunol 164: 3149-3156   DOI
58 Ogus AC, Yoldas B, Ozdemir T, Uguz A, Olcen S, Keser I, Coskun M, Cilli A, and Yegin O (2004) The Arg753GLn polymorphism of the human toll-like receptor 2 gene in tuberculosis disease. Eur Respir J 23: 219-223   DOI   ScienceOn
59 Matsushima N, Tanaka T, Enkhbayar P, Mikami T, Taga M, Yamada K, and Kuroki Y (2007) Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate tolllike receptors. BMC Genomics 8: 124   DOI   PUBMED   ScienceOn
60 Kobe B and Deisenhofer J (1995) Proteins with leucine-rich repeats. Curr Opin Struct Biol 5: 409-416   DOI   ScienceOn