Browse > Article

Ventral Striatal Connections of Unimodal and Multimodal Cortex of the Superior Temporal Sulcus in Macaque Monkeys(Macacca nemestrina)  

Jung, Yong-Wook (Department of Physiology, School of Medicine, Dongguk University)
Hong, Sung-Won (Department of Anatomy, School of Medicine, Dongguk University)
Publication Information
Animal cells and systems / v.8, no.4, 2004 , pp. 319-328 More about this Journal
Abstract
Extrinsic connections between the cortex of the superior temporal sulcus (STS) and the ventral striatum in pigtail macaque monkeys (Macacca nemestrina) were studied by injection of retrograde tracers into the ventromedial caudate nucleus, the ventral and central shells of the nucleus accumbens (NA), the dorsal core of the NA, and the ventrolateral putamen. In the present study, we demonstrate that the projections from the unimodal (area TAa, IPa, TEa, and TEm) and the multimodal (area TPO and PGa) sensory association areas in the STS mainly terminate in the ventromedial caudate nucleus as well as in the ventral and central shells of the NA. However, there are only few projections to the dorsal core of the NA and the ventrolateral putamen from the sensory association cortex in the STS. Based on these differential neural connections between the subterritories of the ventral striatum and the sensory association areas, the ventromedial caudate nucleus and the shells of NA appear to be major integration sites for sensory input from the STS and functionally different from the dorsal core of NA and the ventrolateral putamen.
Keywords
Ventral striatum; Superior temporal sulcus; Ventromedial caudate nucleus; Nucleus accumbens; Ventral shell; Sensory association areas; Macaque monkey; Retrograde tracing; Macacca nemestrina;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Vogt BA and Pandya DN (1978) Corticocortical connections of somatic sensory cortex (areas 3, 1 and 2) in the rhesus monkey. J Comp Neurol 177: 179-192   DOI   ScienceOn
2 Zahm DS and Heimer L (1993) Specificity in the efferent projections of the nucleus accumbens in the rat: comparison of the rostral pole projection patterns with those of the core and shell. J Comp Neurol 327: 220-232   DOI   ScienceOn
3 Ungerleider LG, Gaffan D, and Pelak VS (1989) Projections from inferior temporal cortex to prefrontal cortex via the uncinate in rhesus monkeys. Exp Brain Res 76: 473-484   DOI
4 Vaadia E, Benson DA, Hienz RD, and Goldstein MH Jr (1986) Unit study of monkey frontal cortex: active localization of auditory and visual stimuli. J Neurophysiol 56: 934-952   DOI
5 Van Essen DC and Maunsell HR (1983) Hierarchical organization and functional streams in the visual cortex. Trends Neurosci 6: 370-375   DOI   ScienceOn
6 Suzuki H and Azuma M (1983) Topographic studies of visual neurons in the dorsolateral prefrontal cortex of the monkey. Exp Brain Res 53: 47-58   DOI
7 Tigges J, Tigges M, Anschel S, Cross NA, Letbtter WD, and Mcbride RL (1981) Real and laminar distribution of neurons interconnecting the central visual cortical areas 17, 18, 19 and MT in squirrel monkey (Saimiri). J Comp Neurol 202: 539-560   DOI   ScienceOn
8 Rosene DL and Pandya DN (1983) Architectonics and connections of the posterior parahippocampal gyrus in the rhesus monkey. Soc Neurosci Abstr 9: 222
9 Schwartz ML and Goldman-Rakic PS (1984) Callosal and intrahemispheric connectivity of the prefrontal association cortex in the rhesus monkey: relation between intraparietal and principal sulcal cortex. J Comp Neurol 226: 403-420   DOI   ScienceOn
10 Seltzer B and Pandya DN (1978) Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Res 149: 1-24   DOI   ScienceOn
11 Seltzer B and Pandya DN (1989) Intrinsic connections of the superior temporal suclus in the rhesus monkey. J Comp Neurol 290: 451-471   DOI   ScienceOn
12 Schultz W (1992) Activity of dopamine neurons in the behaving primate. Semin Neurosci 4: 129-138   DOI
13 Paxinos G, Huang XF, and Toga AW (2000) The Rhesus Monkey Brain in Stereotaxic Coordinates. 2nd Ed. Academic Press, Sydney
14 Kunishio K and Haber SN (1994) Primate cingulostriatal projection: limbic striatal versus sensorimotor striatal input. J Comp Neurol 350: 337-356   DOI   ScienceOn
15 Petrides M and Pandya DN (1988) Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey. J Comp Neurol 273: 52-66   DOI   ScienceOn
16 Robbins TW and Everitt BJ (1996) Neurobehavioral mechanism of reward and motivation. Curr Opin Neurobiol 6: 228-236   DOI   ScienceOn
17 Rockland KS and Pandya DN (1981) Cortical connections of the occipital lobe in the rhesus monkey: interconnections between areas 17, 18, 19 and the superior temporal sulcus. Brain Res 212: 249-270   DOI   ScienceOn
18 Lynd-Balta E and Haber SN (1994) Primate striatonigral projections: a comparison of the sensorimotor-related striatum and the ventral striatum. J Comp Neurol 345: 562-578   DOI   ScienceOn
19 Mesulam M-M (1983) The functional anatomy and hemispheric specialization for directed attention. Trends Neurosci 6: 384-387   DOI   ScienceOn
20 Mistlin AJ and Perette DI (1990) Visual and somatosensory processing in the macaque temporal cortex. Exp Brain Res 82: 437-450   DOI
21 Nauta WJH (1972) Neural associations of the frontal cortex. Acta Neurobiol Exp (Warsz) 32: 125-140
22 Pandya DN and Seltzer B (1982) Association areas of the cerebral cortex. Trends Neurosci 5: 386-390   DOI   ScienceOn
23 Jung YW and Hong S (2003b) Corticostriatal connections of the superior temporal regions in the macaque monkeys. Korean J Biol Sci 7: 317-325   DOI
24 Pandya DN, Seltzer B, and Barbas H (1988) Input-output organization of the primate cerebral cortex. In: Steklis HD and Erwin J (eds), Comparative Primate Biology, Vol 4: Neurosciences. Alan R. Liss, Inc, New York, pp 39-80
25 Jones EG and Powell TPS (1970) An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93: 793-820   DOI   ScienceOn
26 Jung YW and Hong S (2003a) Organization of projections from the medial temporal cortical areas to the ventral striatum in macaque monkeys. Korean J Biol Sci 7: 237-248   과학기술학회마을   DOI
27 Kalivas PW, Churchill L, and Klitenick MA (1993) The circuitry mediating the translation of motivational stimuli into adaptive motor responses. In: Kalivas PW and Barnes CO (eds), Limbic Motor Circuits and Neuropsychiatry, CRC, Boca Raton, pp 237-275
28 Deutch AY and Cameron DS (1992) Pharmacological characterization of dopamine system in the nucleus accumbens core and shell. Neuroscience 46: 49-56   DOI   ScienceOn
29 Ferry AT, Ongur D, An X, and Price JL (2000) Prefrontal cortical projections to the striatum in macaque monkeys: evidence for an organization related to prefrontal networks. J Comp Neurol 425: 447-470   DOI   ScienceOn
30 Galaburda AM (1983) Anatomy of language; lessons from comparative anatomy. In: Kaplan D, Lecours AR, and Marshall J (eds), Neurolingustics. MIT Press, Cambridge, pp 398-415
31 Haber SN, Lynd E, Klein C, and Groenewegen HJ (1990) Topographic organization of the ventral striatal efferent projections in the rhesus monkey: an anterograde tracing study. J Comp Neurol 293: 282-298   DOI
32 Galaburda AM and Pandya DN (1983) The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey. J Comp Neurol 221: 169-184   DOI   ScienceOn
33 Gimenez-Amaya JM, McFarland NR, de las Heras S, and Haber SN (1995) Organization of thalamic projections to the ventral striatum in the primate. J Comp Neurol 354: 127-149   DOI   ScienceOn
34 Haber SN, Kunishio K, Mizobuchi M, and Lynd-Balta E (1995) The orbital and medial prefrontal circuit through the primate basal ganglia. J Neurosci 15: 4851-4867
35 Heilmam KM, Pandya DN, and Geschwind (1970) Trimodal inattention following parietal lobe ablations. Trans Am Neurol Assoc 95: 259-261
36 Heimer L, Switzer RD, and Van Hoesen GW (1982) Ventral striatum and ventral pallidum. components of the motor system? Trends Neurasci 5: 83-87   DOI   ScienceOn
37 Baylis GC, Rolls ET, and Leonard CM (1987) Functional subdivisions of the temporal lobe of neocortex. J Neurosci 7: 330-342
38 Berendse HW, Galis-de Graaf Y, and Groenewegen HJ (1992) Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. J Comp Neurol 316: 314-347   DOI   ScienceOn
39 Barnes CL and Pandya DN (1992) Efferent cortical connections of multimodal cortex of the superior temporal sulcus in the rhesus monkey. J Comp Neurol 318: 222-244   DOI   ScienceOn
40 Barbas H and Mesulam M-M (1981) Organizations of afferent input to subdivisions of area 8 in cerebral hemispheres of monkey. J Comp Neurol 200: 407-432   DOI   ScienceOn
41 Bonin GV and Bailey P (1947) The Neocortex of Macaca mulatta. The University of Illinois Press, Urbana-Champaign
42 Boussaoud D, Ungerleider LG, and Desimone R (1990) Pathways for motion analysis: cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque. J Comp Neurol 296: 463-495   DOI   ScienceOn
43 Cipolloni PB and Pandya DN (1989) Connectional analysis of the ipsilateral and contralateral afferent neurons of the superior temporal region in the rhesus monkey. J Comp Neurol 281: 567-585   DOI   ScienceOn
44 Damasio AR (1989) Time-locked multiregional retroactivation: A system level proposal for the neural substrates of recall and recognition. Cognition 33: 25-62   DOI   ScienceOn
45 Desimone R and Ungerleider LG (1986) Multiple visual areas in the caudal superior suclus of the macaque. J Comp Neurol 248: 164-189   DOI   ScienceOn
46 Alheid GF, Heimer L, and Switzer RC III (1990) Basal ganglia. In: Paxinos G (ed), The Human Nervous System, Academic Press, San Diego, pp 483-582