1 |
L. Yang, Uniqueness theorem for holomorphic curves on the disc, Publ. Math. Debrecen 98 (2021), no. 3-4, 299-312.
DOI
|
2 |
M. Ru, Nevanlinna Theory and Its Relation to Diophantine Approximation, World Scientific Publishing Co., Inc., River Edge, NJ, 2001. https://doi.org/10.1142/9789812810519
DOI
|
3 |
S. D. Quang, Second main theorems with weighted counting functions and algebraic dependence of meromorphic mappings, Proc. Amer. Math. Soc. 144 (2016), no. 10, 4329-4340. https://doi.org/10.1090/proc/13061
DOI
|
4 |
S. D. Quang, Generalization of uniqueness theorem for meromorphic mappings sharing hyperplanes, Internat. J. Math. 30 (2019), no. 1, 1950011.
|
5 |
H. H. Pham, S. D. Quang, and D. T. Do, Unicity theorems with truncated multiplicities of meromorphic mappings in several complex variables sharing small identical sets for moving targets, Internat. J. Math. 21 (2010), no. 9, 1095-1120. https://doi.org/10.1142/S0129167X10006409
DOI
|
6 |
M. Ru, A uniqueness theorem with moving targets without counting multiplicity, Proc. Amer. Math. Soc. 129 (2001), no. 9, 2701-2707. https://doi.org/10.1090/S0002-9939-01-06040-3
DOI
|
7 |
M. Ru and R. Walden, Uniqueness results for holomorphic mappings on the disc, Acta Math. Vietnam. 45 (2020), no. 1, 71-81. https://doi.org/10.1007/s40306-018-00319-w
DOI
|
8 |
S. D. Quang, Second main theorem for holomorphic maps from complex disks with moving hyperplanes and application, Complex Var Elliptic Equ. Published online: 10 Oct 2021. https://doi.org/10.1080/17476933.2021.1984438
DOI
|
9 |
Z. Chen, Y. Li, and Q. Yan, Uniqueness problem with truncated multiplicities of meromorphic mappings for moving targets, Acta Math. Sci. Ser. B (Engl. Ed.) 27 (2007), no. 3, 625-634. https://doi.org/10.1016/S0252-9602(07)60062-9
DOI
|
10 |
J. Noguchi and J. Winkelmann, Nevanlinna theory in several complex variables and Diophantine approximation, Grundlehren der mathematischen Wissenschaften, 350, Springer, Tokyo, 2014. https://doi.org/10.1007/978-4-431-54571
DOI
|
11 |
M. Ru and N. Sibony, The second main theorem in the hyperbolic case, Math. Ann. 377 (2020), no. 1-2, 759-795. https://doi.org/10.1007/s00208-018-01797-x
DOI
|