Browse > Article
http://dx.doi.org/10.4134/BKMS.b210341

P-EXTREMAL FUNCTIONS AND BERNSTEIN-MARKOV PROPERTIES ASSOCIATED TO COMPACT SETS IN ℝd  

Anh, Hoang Thieu (University of Transport and Communications)
Chi, Kieu Phuong (Department of Mathematics and Applications Saigon University)
Dieu, Nguyen Quang (Department of Mathematics Hanoi National University of Education and Thang Long Institute of Mathematics and Applied Sciences)
Long, Tang Van (Department of Mathematics Hanoi National University of Education)
Publication Information
Bulletin of the Korean Mathematical Society / v.59, no.4, 2022 , pp. 811-825 More about this Journal
Abstract
Given a compact subset P ⊂ (ℝ+)d and a compact set K in ℂd. We concern with the Bernstein-Markov properties of the triple (P, K, 𝜇) where 𝜇 is a finite positive Borel measure with compact support K. Our approach uses (global) P-extremal functions which is inspired by the classical case (when P = Σ the unit simplex) in [7].
Keywords
Plurisubharmonic functions; Bernstein-Markov property; body convex;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Bayraktar, T. Blum, and N. Levenberg, Pluripotential theory and convex bodies, Sb. Math. 209 (2018), no. 3, 352-384; translated from Mat. Sb. 209 (2018), no. 3, 67-101. https://doi.org/10.4213/sm8893   DOI
2 T. Bloom, Orthogonal polynomials in Cn, Indiana Univ. Math. J. 46 (1997), no. 2, 427-452. https://doi.org/10.1512/iumj.1997.46.1360   DOI
3 T. Bloom and N. Levenberg, Capacity convergence results and applications to a Bernstein-Markov inequality, Trans. Amer. Math. Soc. 351 (1999), no. 12, 4753-4767. https://doi.org/10.1090/S0002-9947-99-02556-8   DOI
4 T. Bayraktar, Zero distribution of random sparse polynomials, Michigan Math. J. 66 (2017), no. 2, 389-419. https://doi.org/10.1307/mmj/1490639822   DOI
5 T. Bayraktar, S. Hussung, N. Levenberg, and M. Perera, Pluripotential theory and convex bodies: a Siciak-Zaharjuta theorem, Comput. Methods Funct. Theory 20 (2020), no. 3-4, 571-590. https://doi.org/10.1007/s40315-020-00345-6   DOI
6 E. Bedford and B. A. Taylor, Plurisubharmonic functions with logarithmic singularities, Ann. Inst. Fourier (Grenoble) 38 (1988), no. 4, 133-171.
7 T. Bloom and B. Shiffman, Zeros of random polynomials on ℂm, Math. Res. Lett. 14 (2007), no. 3, 469-479. https://doi.org/10.4310/MRL.2007.v14.n3.a11   DOI
8 Z. B locki, Minicourse on pluripotential theory, University of Vienna, 2012.
9 T. Bloom, N. Levenberg, F. Piazzon, and F. Wielonsky, Bernstein-Markov: a survey, Dolomites Res. Notes Approx. 8 (2015), Special Issue, 75-91.
10 N. Q. Dieu and P. H. Hiep, Weighted Bernstein-Markov property in ℂn, Ann. Polon. Math. 105 (2012), no. 2, 101-123. https://doi.org/10.4064/ap105-2-1   DOI
11 L. Bos and N. Levenberg, Bernstein-Walsh theory associated to convex bodies and applications to multivariate approximation theory, Comput. Methods Funct. Theory 18 (2018), no. 2, 361-388. https://doi.org/10.1007/s40315-017-0220-4   DOI
12 M. Klimek, Pluripotential Theory, London Mathematical Society Monographs. New Series, 6, The Clarendon Press, Oxford University Press, New York, 1991.
13 N. Levenberg and M. Perera, A global domination principle for P-pluripotential theory, in Complex Analysis and Spectral Theory, 11-19, Contemp. Math., 743, Centre Rech. Math. Proc, Amer. Math. Soc., RI, 2020. https://doi.org/10.1090/conm/743/14955   DOI
14 J. Siciak, Extremal plurisubharmonic functions in Cn, Ann. Polon. Math. 39 (1981), 175-211. https://doi.org/10.4064/ap-39-1-175-211   DOI