Browse > Article
http://dx.doi.org/10.4134/BKMS.b210422

EXISTENCE OF THE CONTINUED FRACTIONS OF ${\sqrt{d}}$ AND ITS APPLICATIONS  

Lee, Jun Ho (Department of Mathematics Education Mokpo National University)
Publication Information
Bulletin of the Korean Mathematical Society / v.59, no.3, 2022 , pp. 697-707 More about this Journal
Abstract
It is well known that the continued fraction expansion of ${\sqrt{d}}$ has the form $[{\alpha}_0,\;{\bar{{\alpha}_1,\;{\ldots},\;{\alpha}_{l-1},\;2_{{\alpha}_0}}]$ and ${\alpha}_1,\;{\ldots},\;{\alpha}_{l-1}$ is a palindromic sequence of positive integers. For a given positive integer l and a palindromic sequence of positive integers ${\alpha}_1,\;{\ldots},\;{\alpha}_{l-1},$ we define the set $S(l;{\alpha}_1,\;{\ldots},\;{\alpha}_{l-1})\;:=\;\{d{\in}{\mathbb{Z}}{\mid}d>0,\;{\sqrt{d}}=[{\alpha}_0,\;{\bar{{\alpha}_1,\;{\ldots},\;{\alpha}_{l-1},\;2_{{\alpha}_0}}],\;where\;{\alpha}_0={\lfloor}{\sqrt{d}}{\rfloor}\}.$ In this paper, we completely determine when $S(l;{\alpha}_1,\;{\ldots},\;{\alpha}_{l-1})$ is not empty in the case that l is 4, 5, 6, or 7. We also give similar results for $(1+{\sqrt{d}})/2.$ For the case that l is 4, 5, or 6, we explicitly describe the fundamental units of the real quadratic field ${\mathbb{Q}}({\sqrt{d}}).$ Finally, we apply our results to the Mordell conjecture for the fundamental units of ${\mathbb{Q}}({\sqrt{d}}).$
Keywords
Continued fractions; quadratic fields; fundamental units;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 K. Tomita, Explicit representation of fundamental units of some real quadratic fields. II, J. Number Theory 63 (1997), no. 2, 275-285. https://doi.org/10.1006/jnth.1997.2088   DOI
2 N. C. Ankeny, E. Artin, and S. Chowla, The class-number of real quadratic number fields, Ann. of Math. (2) 56 (1952), 479-493. https://doi.org/10.2307/1969656   DOI
3 T. Azuhata, On the fundamental units and the class numbers of real quadratic fields, Nagoya Math. J. 95 (1984), 125-135. https://doi.org/10.1017/S0027763000021036   DOI
4 L. Bernstein, Fundamental units and cycles in the period of real quadratic number fields. II, Pacific J. Math. 63 (1976), no. 1, 63-78. http://projecteuclid.org/euclid.pjm/1102867567   DOI
5 C. Friesen, On continued fractions of given period, Proc. Amer. Math. Soc. 103 (1988), no. 1, 9-14. https://doi.org/10.2307/2047518   DOI
6 R. A. Mollin, Quadratics, CRC Press Series on Discrete Mathematics and its Applications, CRC Press, Boca Raton, FL, 1996.
7 O. Ozer and F. K. Telci, On continued fractions of real quadratic fields with period six, Int. J. Contemp. Math. Sci. 6 (2011), no. 17-20, 833-840.
8 K. Tomita, Explicit representation of fundamental units of some quadratic fields, Proc. Japan Acad. Ser. A Math. Sci. 71 (1995), no. 2, 41-43. http://projecteuclid.org/euclid.pja/1195510812   DOI
9 L. Bernstein, Fundamental units and cycles in the period of real quadratic number fields. I, Pacific J. Math. 63 (1976), no. 1, 37-61. http://projecteuclid.org/euclid.pjm/1102867566   DOI
10 O. Perron, Die Lehre von den Kettenbruchen. Bd I. Elementare Kettenbruche, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1954.
11 D. Byeon and S. Lee, A note on units of real quadratic fields, Bull. Korean Math. Soc. 49 (2012), no. 4, 767-774. https://doi.org/10.4134/BKMS.2012.49.4.767   DOI
12 D. Chakraborty and A. Saikia, On a conjecture of Mordell, Rocky Mountain J. Math. 49 (2019), no. 8, 2545-2556. https://doi.org/10.1216/RMJ-2019-49-8-2545   DOI
13 R. Hashimoto, Ankeny-Artin-Chowla conjecture and continued fraction expansion, J. Number Theory 90 (2001), no. 1, 143-153. https://doi.org/10.1006/jnth.2001.2652   DOI
14 J. Mc Laughlin, Multi-variable polynomial solutions to Pell's equation and fundamental units in real quadratic fields, Pacific J. Math. 210 (2003), no. 2, 335-349. https://doi.org/10.2140/pjm.2003.210.335   DOI
15 L. J. Mordell, On a Pellian equation conjecture, Acta Arith. 6 (1960), 137-144. https://doi.org/10.4064/aa-6-2-137-144   DOI
16 L. J. Mordell, On a Pellian equation conjecture. II, J. London Math. Soc. 36 (1961), 282-288. https://doi.org/10.1112/jlms/s1-36.1.282   DOI
17 O. Ozer, F. K. Telci, and H. I,scan, On some real quadratic fields with period 4, Int. J. Contemp. Math. Sci. 4 (2009), no. 25-28, 1389-1396.
18 A. J. van der Poorten, H. J. J. te Riele, and H. C. Williams, Computer verification of the Ankeny-Artin-Chowla conjecture for all primes less than 100 000 000 000, Math. Comp. 70 (2001), no. 235, 1311-1328. https://doi.org/10.1090/S0025-5718-00-01234-5   DOI
19 A. J. van der Poorten, H. J. J. te Riele, and H. C. Williams, Corrigenda and addition to: "Computer verification of the Ankeny-Artin-Chowla conjecture for all primes less than 100 000 000 000, Math. Comp. 72 (2003), no. 241, 521-523.   DOI
20 B. D. Beach, H. C. Williams, and C. R. Zarnke, Some computer results on units in quadratic and cubic fields, in Proceedings of the Twenty-Fifth Summer Meeting of the Canadian Mathematical Congress (Lakehead Univ., Thunder Bay, Ont., 1971), 609-648, Lakehead Univ., Thunder Bay, ON, 1971.