Browse > Article
http://dx.doi.org/10.4134/BKMS.b210058

GLOBAL LARGE SOLUTIONS FOR THE COMPRESSIBLE MAGNETOHYDRODYNAMIC SYSTEM  

Li, Jinlu (School of Mathematics and Computer Sciences Gannan Normal University)
Yu, Yanghai (School of Mathematics and Statistics Anhui Normal University)
Zhu, Weipeng (School of Mathematics and Big Data Foshan University)
Publication Information
Bulletin of the Korean Mathematical Society / v.58, no.6, 2021 , pp. 1521-1537 More about this Journal
Abstract
In this paper we consider the global well-posedness of compressible magnetohydrodynamic system in ℝd with d ≥ 2, in the framework of the critical Besov spaces. We can show that if the initial data, the shear viscosity and the magnetic diffusion coefficient are small comparing with the volume viscosity, then the compressible magnetohydrodynamic system has a unique global solution. Our result improves the previous one by Danchin and Mucha [10] who considered the compressible Navier-Stokes equations.
Keywords
Compressible MHD system; global solution; Besov spaces;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Wang, Large solutions to the initial-boundary value problem for planar magnetohydrodynamics, SIAM J. Appl. Math. 63 (2003), no. 4, 1424-1441. https://doi.org/10.1137/S0036139902409284   DOI
2 G. Strohmer, About compressible viscous fluid flow in a bounded region, Pacific J. Math. 143 (1990), no. 2, 359-375. http://projecteuclid.org/euclid.pjm/1102645982   DOI
3 A. I. Vol'pert and S. I. Hudjaev, The Cauchy problem for composite systems of nonlinear differential equations, Mat. Sb. (N.S.) 87(129) (1972), 504-528.
4 X. Wu, Y. Yu, and Y. Tang, Global existence and asymptotic behavior for the 3D generalized Hall-MHD system, Nonlinear Anal. 151 (2017), 41-50. https://doi.org/10.1016/j.na.2016.11.010   DOI
5 J. Zhang and J. Zhao, Some decay estimates of solutions for the 3-D compressible isentropic magnetohydrodynamics, Commun. Math. Sci. 8 (2010), no. 4, 835-850. http://projecteuclid.org/euclid.cms/1288725260   DOI
6 R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math. 141 (2000), no. 3, 579-614. https://doi.org/10.1007/s002220000078   DOI
7 H. Bahouri, J.-Y. Chemin, and R. Danchin, Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften, 343, Springer, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-16830-7
8 H. Cabannes, Theoretical Magnetohydrodynamics, Academic Press, New York, 1970.
9 G.-Q. Chen and D. Wang, Existence and continuous dependence of large solutions for the magnetohydrodynamic equations, Z. Angew. Math. Phys. 54 (2003), no. 4, 608-632. https://doi.org/10.1007/s00033-003-1017-z   DOI
10 R. Danchin, Global existence in critical spaces for flows of compressible viscous and heatconductive gases, Arch. Ration. Mech. Anal. 160 (2001), no. 1, 1-39. https://doi.org/10.1007/s002050100155   DOI
11 R. Danchin, Well-posedness in critical spaces for barotropic viscous fluids with truly not constant density, Comm. Partial Differential Equations 32 (2007), no. 7-9, 1373-1397. https://doi.org/10.1080/03605300600910399   DOI
12 R. Danchin and L. He, The incompressible limit in Lp type critical spaces, Math. Ann. 366 (2016), no. 3-4, 1365-1402. https://doi.org/10.1007/s00208-016-1361-x   DOI
13 X. Hu and D. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal. 197 (2010), no. 1, 203-238. https://doi.org/10.1007/s00205-010-0295-9   DOI
14 S. Kawashima, Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics, (Ph.D. thesis), Kyoto University, 1984.
15 F. Li, Y. Mu, and D. Wang, Local well-posedness and low Mach number limit of the compressible magnetohydrodynamic equations in critical spaces, Kinet. Relat. Models 10 (2017), no. 3, 741-784. https://doi.org/10.3934/krm.2017030   DOI
16 J. Li, Y. Yu, and W. Zhu, A class large solution of the 3D Hall-magnetohydrodynamic equations, J. Differential Equations 268 (2020), no. 10, 5811-5822. https://doi.org/10.1016/j.jde.2019.11.020   DOI
17 T. Umeda, S. Kawashima, and Y. Shizuta, On the decay of solutions to the linearized equations of electromagnetofluid dynamics, Japan J. Appl. Math. 1 (1984), no. 2, 435-457. https://doi.org/10.1007/BF03167068   DOI
18 G.-Q. Chen and D. Wang, Global solutions of nonlinear magnetohydrodynamics with large initial data, J. Differential Equations 182 (2002), no. 2, 344-376. https://doi.org/10.1006/jdeq.2001.4111   DOI
19 R. Danchin, Local theory in critical spaces for compressible viscous and heat-conductive gases, Comm. Partial Differential Equations 26 (2001), no. 7-8, 1183-1233. https://doi.org/10.1081/PDE-100106132   DOI
20 J. Fan, S. Jiang, and G. Nakamura, Vanishing shear viscosity limit in the magnetohydrodynamic equations, Comm. Math. Phys. 270 (2007), no. 3, 691-708. https://doi.org/10.1007/s00220-006-0167-1   DOI
21 X. Hu and D. Wang, Global solutions to the three-dimensional full compressible magnetohydrodynamic flows, Comm. Math. Phys. 283 (2008), no. 1, 255-284. https://doi.org/10.1007/s00220-008-0497-2   DOI
22 J. Fan and W. Yu, Strong solution to the compressible magnetohydrodynamic equations with vacuum, Nonlinear Anal. Real World Appl. 10 (2009), no. 1, 392-409. https://doi.org/10.1016/j.nonrwa.2007.10.001   DOI
23 R. Danchin and P. B. Mucha, Compressible Navier-Stokes system: large solutions and incompressible limit, Adv. Math. 320 (2017), 904-925. https://doi.org/10.1016/j.aim.2017.09.025   DOI
24 L. D. Landau and E. M. Lifshitz, Electrodynamics of continuous media, translated from the Russian by J. B. Sykes and J. S. Bell, Course of Theoretical Physics, Vol. 8, Pergamon Press, Oxford, 1960.
25 B. Ducomet and E. Feireisl, The equations of magnetohydrodynamics: on the interaction between matter and radiation in the evolution of gaseous stars, Comm. Math. Phys. 266 (2006), no. 3, 595-629. https://doi.org/10.1007/s00220-006-0052-y   DOI
26 J. Fan and W. Yu, Global variational solutions to the compressible magnetohydrodynamic equations, Nonlinear Anal. 69 (2008), no. 10, 3637-3660. https://doi.org/10.1016/j.na.2007.10.005   DOI