Browse > Article
http://dx.doi.org/10.4134/BKMS.b200928

ON BARYCENTRIC TRANSFORMATIONS OF FANO POLYTOPES  

Hwang, DongSeon (Department of Mathematics Ajou University)
Kim, Yeonsu (Department of Mathematics Ajou University)
Publication Information
Bulletin of the Korean Mathematical Society / v.58, no.5, 2021 , pp. 1247-1260 More about this Journal
Abstract
We introduce the notion of barycentric transformation of Fano polytopes, from which we can assign a certain type to each Fano polytope. The type can be viewed as a measure of the extent to which the given Fano polytope is close to be Kähler-Einstein. In particular, we expect that every Kähler-Einstein Fano polytope is of type B. We verify this expectation for some low dimensional cases. We emphasize that for a Fano polytope X of dimension 1, 3 or 5, X is Kähler-Einstein if and only if it is of type B.
Keywords
Barycentric transformation; Kahler-Einstein Fano polytope; symmetric Fano polytope;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. M. Kasprzyk, M. Kreuzer, and B. Nill, On the combinatorial classification of toric log del Pezzo surfaces, LMS J. Comput. Math. 13 (2010), 33-46. https://doi.org/10.1112/S1461157008000387   DOI
2 Y. Nakagawa, Combinatorial formulae for Futaki characters and generalized Killing forms of toric Fano orbifolds, in The Third Pacific Rim Geometry Conference (Seoul, 1996), 223-260, Monogr. Geom. Topology, 25, Int. Press, Cambridge, MA, 1998.
3 Y. Nakagawa, On the examples of Nill and Paffenholz, Internat. J. Math. 26 (2015), no. 4, 1540007, 15 pp. https://doi.org/10.1142/S0129167X15400078   DOI
4 M. Obro,An algorithm for the classification of smooth Fano polytopes, arXiv:0704.0049.
5 SageMath, the Sage Mathematics Software System (Version 9.1), The Sage Developers, 2020, https://www.sagemath.org.
6 D. A. Cox, J. B. Little, and H. K. Schenck, Toric varieties, Graduate Studies in Mathematics, 124, American Mathematical Society, Providence, RI, 2011. https://doi.org/10.1090/gsm/124
7 D. Hwang and Y. Kim,On Kahler-Einstein Fano polygons, arXiv:2012.13373v2.
8 A. Futaki, H. Ono, and Y. Sano, Hilbert series and obstructions to asymptotic semistability, Adv. Math. 226 (2011), no. 1, 254-284. https://doi.org/10.1016/j.aim.2010.06.018   DOI
9 V. V. Batyrev and E. N. Selivanova, Einstein-Kahler metrics on symmetric toric Fano manifolds, J. Reine Angew. Math. 512 (1999), 225-236. https://doi.org/10.1515/crll.1999.054   DOI
10 K. Chan and N. C. Leung, Miyaoka-Yau type inequalities for Kahler-Einstein manifolds, Comm. Anal. Geom. 15 (2007), no. 2, 359-379. http://dx.doi.org/10.4310/CAG.2007.v15.n2.a6   DOI
11 Y. Suyama, Classification of Toric log del Pezzo surfaces with few singular points, arXiv:1910.00206v1.
12 A. M. Kasprzyk and B. Nill, Fano polytopes, in Strings, gauge fields, and the geometry behind, 349-364, World Sci. Publ., Hackensack, NJ, 2013.
13 B. Nill and A. Paffenholz, Examples of Kahler-Einstein toric Fano manifolds associated to non-symmetric reflexive polytopes, Beitr. Algebra Geom. 52 (2011), no. 2, 297-304. https://doi.org/10.1007/s13366-011-0041-y   DOI
14 J. Song, The α-invariant on toric Fano manifolds, Amer. J. Math. 127 (2005), no. 6, 1247-1259.   DOI
15 R. J. Berman and B. Berndtsson, Real Monge-Ampere equations and Kahler-Ricci solitons on toric log Fano varieties, Ann. Fac. Sci. Toulouse Math. (6) 22 (2013), no. 4, 649-711. https://doi.org/10.5802/afst.1386   DOI
16 Graded Ring Database, http://www.grdb.co.uk/