Browse > Article
http://dx.doi.org/10.4134/BKMS.b200357

REMARKS ON THE INFINITY WAVE EQUATION  

Huh, Hyungjin (Department of Mathematics Chung-Ang University)
Publication Information
Bulletin of the Korean Mathematical Society / v.58, no.2, 2021 , pp. 451-459 More about this Journal
Abstract
We propose the infinity wave equation which can be derived from the exponential wave equation through the limit p → ∞. The solution of infinity Laplacian equation can be considered as a static solution of the infinity wave equation. We present basic observations and find some special solutions.
Keywords
Infinity wave equation; exponential wave equation; infinity Laplacian;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 M. C. Hong, Liouville theorems for exponentially harmonic functions on Riemannian manifolds, Manuscripta Math. 77 (1992), no. 1, 41-46. https://doi.org/10.1007/BF02567042   DOI
2 H. Huh, Global solutions of the exponential wave equation with small initial data, Bull. Korean Math. Soc. 50 (2013), no. 3, 811-821. https://doi.org/10.4134/BKMS.2013.50.3.811   DOI
3 A. D. Kanfon, A. Fuzfa, and D. Lambert, Some examples of exponentially harmonic maps, J. Phys. A 35 (2002), no. 35, 7629-7639. https://doi.org/10.1088/0305-4470/35/35/307   DOI
4 H. Koch, Y. R.-Y. Zhang, and Y. Zhou, Some sharp Sobolev regularity for inhomogeneous infinity Laplace equation in plane, J. Math. Pures Appl. (9) 132 (2019), 483-521. https://doi.org/10.1016/j.matpur.2019.02.007   DOI
5 P. Lewintan, The "wrong minimal surface equation" does not have the Bernstein property, Analysis (Munich) 31 (2011), no. 4, 299-303. https://doi.org/10.1524/anly.2011.1137   DOI
6 E. Lindgren, On the regularity of solutions of the inhomogeneous infinity Laplace equation, Proc. Amer. Math. Soc. 142 (2014), no. 1, 277-288. https://doi.org/10.1090/S0002-9939-2013-12180-5   DOI
7 J. M. Overduin and P. S. Wesson, Kaluza-Klein gravity, Phys. Rep. 283 (1997), no. 5-6, 303-378. https://doi.org/10.1016/S0370-1573(96)00046-4   DOI
8 Y. Peres, O. Schramm, S. Sheffield, and D. B. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc. 22 (2009), no. 1, 167-210. https://doi.org/10.1090/S0894-0347-08-00606-1   DOI
9 Y. Pinchover and J. Rubinstein, An Introduction to Partial Differential Equations, Cambridge University Press, Cambridge, 2005. https://doi.org/10.1017/CBO9780511801228   DOI
10 C.-H. Wei and N.-A. Lai, Global existence of smooth solutions to exponential wave maps in FLRW spacetimes, Pacific J. Math. 289 (2017), no. 2, 489-509. https://doi.org/10.2140/pjm.2017.289.489   DOI
11 G. Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Mat. 6 (1967), 551-561 (1967). https://doi.org/10.1007/BF02591928   DOI
12 G. Aronsson, On certain singular solutions of the partial differential equation u2xuxx+2uxuyuxy+u2yuyy = 0, Manuscripta Math. 47 (1984), no. 1-3, 133-151. https://doi.org/10.1007/BF01174590   DOI
13 G. Aronsson, M. G. Crandall, and P. Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. (N.S.) 41 (2004), no. 4, 439-505. https://doi.org/10.1090/S0273-0979-04-01035-3   DOI
14 D. P. Chi, G. Choi, and J. Chang, Asymptotic behavior of harmonic maps and exponentially harmonic functions, J. Korean Math. Soc. 39 (2002), no. 5, 731-743. https://doi.org/10.4134/JKMS.2002.39.5.731   DOI
15 L. C. Evans, The 1-Laplacian, the ∞-Laplacian and differential games, in Perspectives in nonlinear partial differential equations, 245-254, Contemp. Math., 446, Amer. Math. Soc., Providence, RI, 2007. https://doi.org/10.1090/conm/446/08634   DOI
16 Y.-J. Chiang and Y.-H. Yang, Exponential wave maps, J. Geom. Phys. 57 (2007), no. 12, 2521-2532. https://doi.org/10.1016/j.geomphys.2007.09.003   DOI
17 R. Courant and D. Hilbert, Methods of Mathematical Physics. Vol. I, Interscience Publishers, Inc., New York, NY, 1953.
18 J. Eells and L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), no. 5, 385-524. https://doi.org/10.1112/blms/20.5.385   DOI
19 L. C. Evans and O. Savin, C1,α regularity for infinity harmonic functions in two dimensions, Calc. Var. Partial Differential Equations 32 (2008), no. 3, 325-347. https://doi.org/10.1007/s00526-007-0143-4   DOI
20 L. C. Evans and Y. Yu, Various properties of solutions of the infinity-Laplacian equation, Comm. Partial Differential Equations 30 (2005), no. 7-9, 1401-1428. https://doi.org/10.1080/03605300500258956   DOI
21 G. Aronsson, On the partial differential equation ux2uxx+2uxuyuxy+uy2uyy = 0, Ark. Mat. 7 (1968), 395-425. https://doi.org/10.1007/BF02590989   DOI
22 S. N. Armstrong and C. K. Smart, A finite difference approach to the infinity Laplace equation and tug-of-war games, Trans. Amer. Math. Soc. 364 (2012), no. 2, 595-636. https://doi.org/10.1090/S0002-9947-2011-05289-X   DOI