Browse > Article
http://dx.doi.org/10.4134/BKMS.b190403

HELMHOLTZ DECOMPOSITION AND SEMIGROUP THEORY TO THE FLUID AROUND A MOVING BODY  

Bae, Hyeong-Ohk (Department of Financial Engineering Ajou University)
Publication Information
Bulletin of the Korean Mathematical Society / v.57, no.3, 2020 , pp. 661-676 More about this Journal
Abstract
To understand the interaction of a fluid and a rigid body, we use the concept of B-evolution. Then in a similar way to the usual Navier-Stokes system, we obtain a Helmholtz type decomposition. Using B-evolution theory and the decomposition, we work on the semigroup to analyze the linear part of the system.
Keywords
Helmholtz decomposition; fluid; rigid body; B-evolution; semigroup; fractional power of operator;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Desjardins and M. J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Ration. Mech. Anal. 146 (1999), no. 1, 59-71. https://doi.org/10.1007/s002050050136   DOI
2 G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I, Springer Tracts in Natural Philosophy, 38, Springer-Verlag, New York, 1994.
3 G. P. Galdi, On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications, in Handbook of mathematical fluid dynamics, Vol. I, 653-791, North-Holland, Amsterdam, 2002.
4 A. L. Silvestre, On the self-propelled motion of a rigid body in a viscous liquid and on the attainability of steady symmetric self-propelled motions, J. Math. Fluid Mech. 4 (2002), no. 4, 285-326. https://doi.org/10.1007/PL00012524   DOI
5 C. Conca, J. San Martin, and M. Tucsnak, Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Comm. Partial Differential Equations 25 (2000), no. 5-6, 1019-1042. https://doi.org/10.1080/03605300008821540
6 M. Geissert, K. Gotze, and M. Hieber, $L^p$-theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized Newtonian fluids, Trans. Amer. Math. Soc. 365 (2013), no. 3, 1393-1439. https://doi.org/10.1090/S0002-9947-2012-05652-2   DOI
7 M. Grobbelaar-van Dalsen, Fractional powers of a closed pair of operators, Proc. Roy. Soc. Edinburgh Sect. A 102 (1986), no. 1-2, 149-158. https://doi.org/10.1017/S0308210500014566   DOI
8 M. Grobbelaar-van Dalsen and N. Sauer, Dynamic boundary conditions for the Navier-Stokes equations, Proc. Roy. Soc. Edinburgh Sect. A 113 (1989), no. 1-2, 1-11. https://doi.org/10.1017/S030821050002391X   DOI
9 M. D. Gunzburger, H.-C. Lee, and G. A. Seregin, Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions, J. Math. Fluid Mech. 2 (2000), no. 3, 219-266. https://doi.org/10.1007/PL00000954   DOI
10 T. Hishida, $L^2$ theory for the operator ${\Delta}$ + (k ${\times}$ x) ${\cdot}{\nabla}$ in exterior domains, Nihonkai Math. J. 11 (2000), no. 2, 103-135.
11 N. Sauer, The Friedrichs extension of a pair of operators, Quaestiones Math. 12 (1989), no. 3, 239-249.   DOI
12 A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. https://doi.org/10.1007/978-1-4612-5561-1
13 J. A. San Martin, V. Starovoitov, and M. Tucsnak, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Ration. Mech. Anal. 161 (2002), no. 2, 113-147. https://doi.org/10.1007/s002050100172   DOI
14 N. Sauer, Linear evolution equations in two Banach spaces, Proc. Roy. Soc. Edinburgh Sect. A 91 (1981/82), no. 3-4, 287-303. https://doi.org/10.1017/S0308210500017510   DOI