Browse > Article
http://dx.doi.org/10.4134/BKMS.b190278

ASYMPTOTIC EXACTNESS OF SOME BANK-WEISER ERROR ESTIMATOR FOR QUADRATIC TRIANGULAR FINITE ELEMENT  

Kim, Kwang-Yeon (Department of Mathematics Kangwon National University)
Park, Ju-Seong (Department of Mathematics Kangwon National University)
Publication Information
Bulletin of the Korean Mathematical Society / v.57, no.2, 2020 , pp. 393-406 More about this Journal
Abstract
We analyze a posteriori error estimator for the conforming P2 finite element on triangular meshes which is based on the solution of local Neumann problems. This error estimator extends the one for the conforming P1 finite element proposed in [4]. We prove that it is asymptotically exact for the Poisson equation when the underlying triangulations are mildly structured and the solution is smooth enough.
Keywords
A posteriori error estimator; asymptotic exactness; quadratic finite element method;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. S. Ovall, Function, gradient, and Hessian recovery using quadratic edge-bump functions, SIAM J. Numer. Anal. 45 (2007), no. 3, 1064-1080. https://doi.org/10.1137/060648908   DOI
2 R. Verfurth, A posteriori error estimators for the Stokes equations, Numer. Math. 55 (1989), no. 3, 309-325.   DOI
3 R. Verfurth, A posteriori error estimation and adaptive mesh-refinement techniques, J. Comput. Appl. Math. 50 (1994), no. 1-3, 67-83. https://doi.org/10.1016/0377-0427(94)90290-9   DOI
4 H. Wu and Z. Zhang, Can we have superconvergent gradient recovery under adaptive meshes?, SIAM J. Numer. Anal. 45 (2007), no. 4, 1701-1722. https://doi.org/10.1137/060661430   DOI
5 J. Xu and Z. Zhang, Analysis of recovery type a posteriori error estimators for mildly structured grids, Math. Comp. 73 (2004), no. 247, 1139-1152. https://doi.org/10.1090/S0025-5718-03-01600-4   DOI
6 O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. I. The recovery technique, Internat. J. Numer. Methods Engrg. 33 (1992), no. 7, 1331-1364. https://doi.org/10.1002/nme.1620330702   DOI
7 R. E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp. 44 (1985), no. 170, 283-301. https://doi.org/10.2307/ 2007953   DOI
8 M. Ainsworth, The influence and selection of subspaces for a posteriori error estimators, Numer. Math. 73 (1996), no. 4, 399-418. https://doi.org/10.1007/s002110050198   DOI
9 M. Ainsworth and J. T. Oden, A posteriori error estimation in finite element analysis, Pure and Applied Mathematics (New York), Wiley-Interscience, New York, 2000. https://doi.org/10.1002/9781118032824
10 A. Alonso, Error estimators for a mixed method, Numer. Math. 74 (1996), no. 4, 385-395. https://doi.org/10.1007/s002110050222   DOI
11 R. Duran and R. Rodrguez, On the asymptotic exactness of Bank-Weiser's estimator, Numer. Math. 62 (1992), no. 3, 297-303. https://doi.org/10.1007/BF01396231   DOI
12 R. E. Bank and B. D. Welfert, A posteriori error estimates for the Stokes problem, SIAM J. Numer. Anal. 28 (1991), no. 3, 591-623. https://doi.org/10.1137/0728033   DOI
13 R. E. Bank and J. Xu, Asymptotically exact a posteriori error estimators. I. Grids with superconvergence, SIAM J. Numer. Anal. 41 (2003), no. 6, 2294-2312. https://doi.org/10.1137/S003614290139874X   DOI
14 S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods, third edition, Texts in Applied Mathematics, 15, Springer, New York, 2008. https://doi.org/10.1007/978-0-387-75934-0
15 Y. Huang and J. Xu, Superconvergence of quadratic finite elements on mildly structured grids, Math. Comp. 77 (2008), no. 263, 1253-1268. https://doi.org/10.1090/S0025-5718-08-02051-6   DOI
16 A. Maxim, Asymptotic exactness of an a posteriori error estimator based on the equilibrated residual method, Numer. Math. 106 (2007), no. 2, 225-253. https://doi.org/10.1007/s00211-007-0064-3   DOI
17 D. Kay and D. Silvester, A posteriori error estimation for stabilized mixed approximations of the Stokes equations, SIAM J. Sci. Comput. 21 (1999/00), no. 4, 1321-1336. https://doi.org/10.1137/S1064827598333715   DOI
18 Q. Liao, Error estimation and stabilization for low order nite elements, Ph.D thesis, The University of Manchester, 2010.
19 Q. Liao and D. Silvester, A simple yet effective a posteriori estimator for classical mixed approximation of Stokes equations, Appl. Numer. Math. 62 (2012), no. 9, 1242-1256. https://doi.org/10.1016/j.apnum.2010.05.003   DOI
20 A. Naga and Z. Zhang, A posteriori error estimates based on the polynomial preserving recovery, SIAM J. Numer. Anal. 42 (2004), no. 4, 1780-1800. https://doi.org/10.1137/S0036142903413002   DOI