Browse > Article
http://dx.doi.org/10.4134/BKMS.b181038

REVERSIBLE AND PSEUDO-REVERSIBLE RINGS  

Huang, Juan (Department of Mathematics Yanbian University)
Jin, Hai-lan (Department of Mathematics Yanbian University)
Lee, Yang (Department of Mathematics Yanbian University)
Piao, Zhelin (Department of Mathematics Yanbian University)
Publication Information
Bulletin of the Korean Mathematical Society / v.56, no.5, 2019 , pp. 1257-1272 More about this Journal
Abstract
This article concerns the structure of idempotents in reversible and pseudo-reversible rings in relation with various sorts of ring extensions. It is known that a ring R is reversible if and only if $ab{\in}I(R)$ for $a,b{\in}R$ implies ab = ba; and a ring R shall be said to be pseudoreversible if $0{\neq}ab{\in}I(R)$ for $a,b{\in}R$ implies ab = ba, where I(R) is the set of all idempotents in R. Pseudo-reversible is seated between reversible and quasi-reversible. It is proved that the reversibility, pseudoreversibility, and quasi-reversibility are equivalent in Dorroh extensions and direct products. Dorroh extensions are also used to construct several sorts of rings which are necessary in the process.
Keywords
pseudo-reversible ring; reversible ring; Dorroh extension; Abelian ring; quasi-reversible ring; direct product; free algebra; matrix ring; polynomial ring;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D. D. Anderson and V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), no. 6, 2847-2852. https://doi.org/10.1080/00927879908826596   DOI
2 P. M. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641-648. https://doi.org/10.1112/S0024609399006116   DOI
3 J. L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc. 38 (1932), no. 2, 85-88. https://doi.org/10.1090/S0002-9904-1932-05333-2   DOI
4 K. R. Goodearl, von Neumann Regular Rings, Monographs and Studies in Mathematics, 4, Pitman (Advanced Publishing Program), Boston, MA, 1979.
5 H. K. Grover, D. Khurana, and S. Singh, Rings with multiplicative sets of primitive idempotents, Comm. Algebra 37 (2009), no. 8, 2583-2590. https://doi.org/10.1080/00927870902747217   DOI
6 C. Huh, H. K. Kim, and Y. Lee, p.p. rings and generalized p.p. rings, J. Pure Appl. Algebra 167 (2002), no. 1, 37-52. https://doi.org/10.1016/S0022-4049(01)00149-9   DOI
7 D. W. Jung, N. K. Kim, Y. Lee, and S. J. Ryu, On properties related to reversible rings, Bull. Korean Math. Soc. 52 (2015), no. 1, 247-261. https://doi.org/10.4134/BKMS.2015.52.1.247   DOI
8 D. W. Jung, C. I. Lee, Y. Lee, S. Park, S. J. Ryu, H. J. Sung, and S. J. Yun, On reversibility related to idempotents, Bull. Korean Math. Soc. (To appear).
9 N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477-488. https://doi.org/10.1006/jabr.1999.8017   DOI
10 N. K. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), no. 1-3, 207-223. https://doi.org/10.1016/S0022-4049(03)00109-9   DOI
11 J. Lambek, Lectures on Rings and Modules, With an appendix by Ian G. Connell, Blaisdell Publishing Co. Ginn and Co., Waltham, MA, 1966.
12 G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60 (1974). https://doi.org/10.2307/1996398   DOI
13 J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359-368. https://doi.org/10.4153/CMB-1971-065-1   DOI
14 G. Marks, Reversible and symmetric rings, J. Pure Appl. Algebra 174 (2002), no. 3, 311-318. https://doi.org/10.1016/S0022-4049(02)00070-1   DOI