Browse > Article
http://dx.doi.org/10.4134/BKMS.b180345

STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY AN ADDITIVE FRACTIONAL BROWNIAN SHEET  

El Barrimi, Oussama (Department of Mathematics Faculty of Sciences Semlalia Cadi Ayyad University)
Ouknine, Youssef (Department of Mathematics Faculty of Sciences Semlalia Cadi Ayyad University)
Publication Information
Bulletin of the Korean Mathematical Society / v.56, no.2, 2019 , pp. 479-489 More about this Journal
Abstract
In this paper, we show the existence of a weak solution for a stochastic differential equation driven by an additive fractional Brownian sheet with Hurst parameters H, H' > 1/2, and a drift coefficient satisfying the linear growth condition. The result is obtained using a suitable Girsanov theorem for the fractional Brownian sheet.
Keywords
fractional Brownian sheet; stochastic differential equations; weak solutions;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. Alos, O. Mazet, and D. Nualart, Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than ${\frac{1}{2}}$, Stochastic Process. Appl. 86 (2000), no. 1, 121-139.   DOI
2 E. Alos, O. Mazet, and D. Nualart, Stochastic calculus with respect to Gaussian processes, Ann. Probab. 29 (2001), no. 2, 766-801.   DOI
3 A. Ayache, S. Leger, and M. Pontier, Drap brownien fractionnaire, Potential Anal. 17 (2002), no. 1, 31-43.   DOI
4 X. Bardina, M. Jolis, and C. A. Tudor, Weak convergence to the fractional Brownian sheet and other two-parameter Gaussian processes, Statist. Probab. Lett. 65 (2003), no. 4, 317-329.   DOI
5 L. Decreusefond and A. S. Ustunel, Stochastic analysis of the fractional Brownian motion, Potential Anal. 10 (1999), no. 2, 177-214.   DOI
6 M. Erraoui, Y. Ouknine, and D. Nualart, Hyperbolic stochastic partial differential equations with additive fractional Brownian sheet, Stoch. Dyn. 3 (2003), no. 2, 121-139.   DOI
7 X. Fernique, Regularite des trajectoires des fonctions aleatoires gaussiennes, in Ecole d'Ete de Probabilites de Saint-Flour, IV-1974, 1-96. Lecture Notes in Math., 480, Springer, Berlin, 1975.
8 C. Jost, Transformation formulas for fractional Brownian motion, Stochastic Process. Appl. 116 (2006), no. 10, 1341-1357.   DOI
9 A. Kamont, On the fractional anisotropic Wiener field, Probab. Math. Statist. 16 (1996), no. 1, 85-98.
10 A. N. Kolmogoroff, Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum, C. R. (Doklady) Acad. Sci. URSS (N.S.) 26 (1940), 115-118.   DOI
11 B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10 (1968), 422-437.   DOI
12 D. Nualart, Stochastic integration with respect to fractional Brownian motion and applications, in Stochastic models (Mexico City, 2002), 3-39, Contemp. Math., 336, Aportaciones Mat, Amer. Math. Soc., Providence, RI, 2003.
13 D. Nualart, The Malliavin Calculus and Related Topics, second edition, Probability and its Applications (New York), Springer-Verlag, Berlin, 2006.
14 D. Nualart and Y. Ouknine, Regularization of differential equations by fractional noise, Stochastic Process. Appl. 102 (2002), no. 1, 103-116.   DOI
15 T. Sottinen and C. A. Tudor, On the equivalence of multiparameter Gaussian processes, J. Theoret. Probab. 19 (2006), no. 2, 461-485.   DOI
16 V. Pipiras and M. S. Taqqu, Deconvolution of fractional Brownian motion, J. Time Ser. Anal. 23 (2002), no. 4, 487-501.   DOI