Browse > Article
http://dx.doi.org/10.4134/BKMS.b171064

INVERSION OF THE CLASSICAL RADON TRANSFORM ON ℤnp  

Cho, Yung Duk (College of Dharma Dongguk University)
Hyun, Jong Yoon (Korea Institute for Advanced Study (KIAS))
Moon, Sunghwan (Department of Mathematics Kyungpook National University)
Publication Information
Bulletin of the Korean Mathematical Society / v.55, no.6, 2018 , pp. 1773-1781 More about this Journal
Abstract
The Radon transform introduced by J. Radon in 1917 is the integral transform which is widely applicable to tomography. Here we study the discrete version of the Radon transform. More precisely, when $C({\mathbb{Z}}^n_p)$ is the set of complex-valued functions on ${\mathbb{Z}}^n_p$. We completely determine the subset of $C({\mathbb{Z}}^n_p)$ whose elements can be recovered from its Radon transform on ${\mathbb{Z}}^n_p$.
Keywords
classical Radon transform; tomography; inversion formula;
Citations & Related Records
연도 인용수 순위
  • Reference
1 V. Maxim, M. Frandes, and R. Prost, Analytical inversion of the Compton transform using the full set of available projections, Inverse Problems 25 (2009), no. 9, 095001, 21 pp.   DOI
2 S. Moon, On the determination of a function from an elliptical Radon transform, J. Math. Anal. Appl. 416 (2014), no. 2, 724-734.   DOI
3 S. Moon, On the determination of a function from its conical Radon transform with a fixed central axis, SIAM J. Math. Anal. 48 (2016), no. 3, 1833-1847.   DOI
4 F. Natterer, The Mathematics of Computerized Tomography, reprint of the 1986 original, Classics in Applied Mathematics, 32, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001.
5 V. Palamodov, Reconstructive Integral Geometry, Monographs in Mathematics, 98, Birkhauser Verlag, Basel, 2004.
6 B. Rubin, Introduction to Radon Transforms, Encyclopedia of Mathematics and its Applications, 160, Cambridge University Press, New York, 2015.
7 J. Wilson and N. Patwari, Radio tomographic imaging with wireless networks, IEEE Transactions on Mobile Computing 9 (2010), no. 5, 621-632.   DOI
8 L. Zalcman, Offbeat integral geometry, Amer. Math. Monthly 87 (1980), no. 3, 161-175.   DOI
9 M. L. Agranovsky and E. T. Quinto, Injectivity sets for the Radon transform over circles and complete systems of radial functions, J. Funct. Anal. 139 (1996), no. 2, 383-414.   DOI
10 G. Ambartsoumian and P. Kuchment, On the injectivity of the circular Radon transform, Inverse Problems 21 (2005), no. 2, 473-485.   DOI
11 C. A. Berenstein, R. Gay, and A. Yger, Inversion of the local Pompeiu transform, J. Analyse Math. 54 (1990), 259-287.   DOI
12 S. R. Deans, The Radon Transform and Some of Its Applications, Dover Books on Mathematics Series. Dover Publications, 2007.
13 M. R. DeDeo and E. Velasquez, The Radon transform on ${\mathbb{Z}}^k_n$, SIAM J. Discrete Math. 18 (2004/05), no. 3, 472-478.   DOI
14 P. Diaconis and R. L. Graham, The Radon transform on $Z^k_2$, Pacific J. Math. 118 (1985), no. 2, 323-345.   DOI
15 L. Ehrenpreis, The Universality of the Radon Transform, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2003.
16 J. A. Fill, The Radon transform on ${\mathbb{Z}}_n$, SIAM J. Discrete Math. 2 (1989), no. 2, 262-283.   DOI
17 P. Frankl and R. L. Graham, The Radon transform on abelian groups, J. Combin. Theory Ser. A 44 (1987), no. 1, 168-171.   DOI
18 S. Helgason, The Radon Transform, second edition, Progress in Mathematics, 5, Birkhauser Boston, Inc., Boston, MA, 1999.
19 C.-Y. Jung and S. Moon, Exact inversion of the cone transform arising in an application of a Compton camera consisting of line detectors, SIAM J. Imaging Sci. 9 (2016), no. 2, 520-536.   DOI