Browse > Article
http://dx.doi.org/10.4134/BKMS.b170933

BEYOND THE CACTUS RANK OF TENSORS  

Ballico, Edoardo (Department of Mathematics University of Trento)
Publication Information
Bulletin of the Korean Mathematical Society / v.55, no.5, 2018 , pp. 1587-1598 More about this Journal
Abstract
We study additive decompositions (and generalized additive decompositions with a zero-dimensional scheme instead of a finite sum of rank 1 tensors), which are not of minimal degree (for sums of rank 1 tensors with more terms than the rank of the tensor, for a zero-dimensional scheme a degree higher than the cactus rank of the tensor). We prove their existence for all degrees higher than the rank of the tensor and, with strong assumptions, higher than the cactus rank of the tensor. Examples show that additional assumptions are needed to get the minimally spanning scheme of degree cactus +1.
Keywords
tensor rank; tensor decomposition; cactus rank; zero-dimensional scheme; Segre embedding;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. Ballico, A. Bernardi, and L. Chiantini, On the dimension of contact loci and the identifiability of tensors, arXiv: 1706.02746.
2 H. Derksen, Kruskal's uniqueness inequality is sharp, Linear Algebra Appl. 438 (2013), no. 2, 708-712.   DOI
3 I. Domanov and L. De Lathauwer, On the uniqueness of the canonical polyadic decomposition of third-order tensors - Part I: Basic results and uniqueness of one factor matrix, SIAM J. Matrix Anal. Appl. 34 (2013), no. 3, 855-875.   DOI
4 I. Domanov and L. De Lathauwer, On the uniqueness of the canonical polyadic decomposition of third-order tensors - Part II: Uniqueness of the overall decomposition, SIAM J. Matrix Anal. Appl. 34 (2013), no. 3, 876-903.   DOI
5 I. Domanov and L. De Lathauwer, Generic uniqueness conditions for the canonical polyadic decomposition and INDSCAL, SIAM J. Matrix Anal. Appl. 36 (2015), no. 4, 1567-1589.   DOI
6 F. Galuppi and M. Mella, Identifiability of homogeneous polynomials and Cremona Transformations, Preprint arXiv:1606.06895, 2016; To appear in J. Reine Angew. Math.; DOI: https://doi.org/10.1515/crelle-2017-0043.   DOI
7 A. Iarrobino and V. Kanev, Power Sums, Gorenstein Algebras, and Determinantal Loci, Lecture Notes in Mathematics, 1721, Springer-Verlag, Berlin, 1999.
8 J. B. Kruskal, Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics, Linear Algebra and Appl. 18 (1977), no. 2, 95-138.   DOI
9 J. M. Landsberg, Tensors: geometry and applications, Graduate Studies in Mathematics, 128, American Mathematical Society, Providence, RI, 2012.
10 M. Mella, Singularities of linear systems and the Waring problem, Trans. Amer. Math. Soc. 358 (2006), no. 12, 5523-5538.   DOI
11 E. Ballico and A. Bernard, Curvilinear schemes and maximum rank of forms, Matematiche (Catania) 72 (2017), no. 1, 137-144.
12 K. Ranestad and F.-O. Schreyer, On the rank of a symmetric form, J. Algebra 346 (2011), 340-342.   DOI
13 N. D. Sidiropoulos and R. Bro, On the uniqueness of multilinear decomposition of N-way arrays, J. Chemometrics 14 (2000), 229-239.   DOI
14 L. Chiantini, G. Ottaviani, and N. Vannieuwenhoven, Effective criteria for specific identifiability of tensors and forms, SIAM J. Ma- trix Anal. Appl. 38 (2017), no. 2, 656-681.   DOI
15 E. Ballico, Tensor ranks on tangent developable of Segre varieties, Linear Multilinear Algebra 61 (2013), no. 7, 881-894.   DOI
16 E. Ballico and A. Bernardi, Stratification of the fourth secant variety of Veronese varieties via the symmetric rank, Adv. Pure Appl. Math. 4 (2013), no. 2, 215-250.
17 E. Ballico and A. Bernard, On the ranks of the third secant variety of Segre-Veronese embeddings, arXiv: 1701.06845.
18 E. Ballico, A. Bernardi, L. Chiantini, and E. Guardo, Bounds on the tensor rank, arXiv: 1705.02299.
19 A. Bernardi, J. Brachat, and B. Mourrain, A comparison of different notions of ranks of symmetric tensors, Linear Algebra Appl. 460 (2014), 205-230.   DOI
20 A. Bernardi and K. Ranestad, On the cactus rank of cubics forms, J. Symbolic Comput. 50 (2013), 291-297.   DOI
21 J. Buczynski and J. M. Landsberg, On the third secant variety, J. Algebraic Combin. 40 (2014), no. 2, 475-502.   DOI
22 C. Bocci and L. Chiantini, On the identifiability of binary Segre products, J. Algebraic Geom. 22 (2013), no. 1, 1-11.   DOI
23 C. Bocci, L. Chiantini, and G. Ottaviani, Refined methods for the identifiability of tensors, Ann. Mat. Pura Appl. (4) 193 (2014), no. 6, 1691-1702.   DOI
24 W. Buczynska and J. Buczynski, Secant varieties to high degree veronese reembeddings, catalecticant matrices and smoothable Gorenstein schemes, J. Algebraic Geom. 23 (2014), 63-90.
25 M. V. Catalisano, L. Chiantini, A. V. Geramita, and A. Oneto Waring-like decompositions of polynomials, 1, Linear Algebra Appl. 533 (2017), 311-325.   DOI
26 L. Chiantini and C. Ciliberto, On the concept of k-secant order of a variety, J. London Math. Soc. (2) 73 (2006), no. 2, 436-454.   DOI
27 L. Chiantini and C. Ciliberto, On the dimension of secant varieties, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 5, 1267-1291.
28 L. Chiantini, M. Mella, and G. Ottaviani, One example of general unidentifiable tensors, J. Algebr. Stat. 5 (2014), no. 1, 64-71.
29 L. Chiantini and G. Ottaviani, On generic identifiability of 3-tensors of small rank, SIAM J. Matrix Anal. Appl. 33 (2012), no. 3, 1018-1037.   DOI
30 L. Chiantini, G. Ottaviani, and N. Vannieuwenhoven, An algorithm for generic and low-rank specific identifiability of complex tensors, SIAM J. Matrix Anal. Appl. 35 (2014), no. 4, 1265-1287.   DOI
31 L. Chiantini, G. Ottaviani, and N. Vannieuwenhoven, On generic identifiability of symmetric tensors of subgeneric rank, Trans. Amer. Math. Soc. 369 (2017), no. 6, 4021-4042.