Browse > Article
http://dx.doi.org/10.4134/BKMS.b170051

COEFFICIENT ESTIMATES FOR A SUBCLASS OF ANALYTIC BI-UNIVALENT FUNCTIONS  

Adegani, Ebrahim Analouei (Department of Mathematics Shahrood University of Technology)
Bulut, Serap (Kocaeli University Faculty of Aviation and Space Sciences Arslanbey Campus)
Zireh, Ahmad (Department of Mathematics Shahrood University of Technology)
Publication Information
Bulletin of the Korean Mathematical Society / v.55, no.2, 2018 , pp. 405-413 More about this Journal
Abstract
In this work, we use the Faber polynomial expansions to find upper bounds for the coefficients of analytic bi-univalent functions in subclass $\Sigma({\tau},{\gamma},{\varphi})$ which is defined by subordination conditions in the open unit disk ${\mathbb{U}}$. In certain cases, our estimates improve some of those existing coefficient bounds.
Keywords
analytic functions; univalent functions; bi-univalent functions; coefficient estimates; Faber polynomials; subordination;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Airault, Symmetric sums associated to the factorization of Grunsky coeffcients, in Groups and symmetries, CRM Proc. Lecture Notes Amer. Math. Soc. Providence, RI, 47 (2007), 3-16.
2 H. Airault and A. Bouali, Differential calculus on the Faber polynomials, Bull. Sci. Math. 130 (2006), no. 3, 179-222.   DOI
3 H. Airault and J. Ren, An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math. 126 (2002), no. 5, 343-367.   DOI
4 R. M. Ali, S. K. Lee, V. Ravichandran, and S. Subramaniam, Coeffcient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (2012), no. 3, 344-351.   DOI
5 E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal. 2 (2013), no. 1, 49-60.
6 P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer-Verlag, New York, 1983.
7 G. Faber, Uber polynomische Entwickelungen, Math. Ann. 57 (1903), no. 3, 389-408.   DOI
8 B. A. Frasin, Coeffcient bounds for certain classes of bi-univalent functions, Hacet. J. Math. Stat. 43 (2014), no. 3, 383-389.
9 J. M. Jahangiri and S. G. Hamidi, Coeffcient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci. 2013, Art. ID 190560, 4 pp.
10 M. Lewin, On a coeffcient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63-68.   DOI
11 Z. Nehari, Conformal Mapping, McGraw-Hill Book Co., Inc., New York, Toronto, London, 1952.
12 H. M. Srivastava and D. Bansal, Coeffcient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc. 23 (2015), no. 2, 242-246.   DOI
13 H. M. Srivastava, S. S. Eker, and R. M. Ali, Coeffcient bounds for a certain class of analytic and bi-univalent functions, Filomat 29 (2015), no. 8, 1839-1845.   DOI
14 P. Zaprawa, On the Fekete-Szego problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin 21 (2014), no. 1, 169-178.
15 H. M. Srivastava, A. K. Mishra, and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), no. 10, 1188-1192.   DOI
16 P. G. Todorov, On the Faber polynomials of the univalent functions of class , J. Math. Anal. Appl. 162 (1991), no. 1, 268-276.   DOI
17 D.-G. Yang and J.-L. Liu, A class of analytic functions with missing coeffcients, Abstr. Appl. Anal. 2011, Art. ID 456729, 16 pp.