Browse > Article
http://dx.doi.org/10.4134/BKMS.b160709

A CHARACTERIZATION OF THE HYPERBOLIC DISC AMONG CONSTANT WIDTH BODIES  

Jeronimo-Castro, Jesus (Facultad de Ingenieria Universidad Autonoma de Queretaro)
Jimenez-Lopez, Francisco G. (Facultad de Ingenieria Universidad Autonoma de Queretaro)
Publication Information
Bulletin of the Korean Mathematical Society / v.54, no.6, 2017 , pp. 2053-2063 More about this Journal
Abstract
In this paper we prove a condition under which a hyperbolic starshaped set has a center of hyperbolic symmetry. We also give the definition of isometric diameters for a hyperbolic convex set, which behave similar to affine diameters for Euclidean convex sets. Using this concept, we give a definition of constant hyperbolic width and we prove that the only hyperbolic sets with constant hyperbolic width and with a hyperbolic center of symmetry are hyperbolic discs.
Keywords
constant width; hyperbolic convex set; centrally symmetric set;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. F. Beardon, The Geometry of Discrete Groups, Springer-Verlag, Berlin Heidelberg New York, 1995.
2 G. D. Chakerian and H. Groemer, Convex bodies of constant width, Convexity and its Applications, Eds. P. M. Gruber and J. M. Wills, Birkhauser, Basel, 1983.
3 B. V. Dekster, Double normals characterize bodies of constant width in Riemannian manifolds, Geometric analysis and nonlinear partial differential equations (Denton, TX, 1990), 187-201, Lecture Notes in Pure and Appl. Math., 144, Dekker, New York, 1993.
4 P. C. Hammer, Diameters of convex bodies, Proc. Amer. Math. Soc. 5 (1954), 304-306.   DOI
5 J. Fillmore, Barbier's theorem in the Lobachevsky plane, Proc. Amer. Math. Soc. 24 (1970), 705-709.
6 H. Rademacher and O. Toeplitz, The Enjoyment of Mathematics, Princeton University Press, 1957.
7 J. Jeronimo-Castro and E. Roldan-Pensado, A characteristic property of the Euclidean disc, Period. Math. Hungar. 59 (2009), no. 2, 213-222.   DOI
8 J. Jeronimo-Castro, G. Ruiz-Hernandez, and S. Tabachnikov, The equal tangents property, Adv. Geom. 14 (2014), no. 3, 447-453.
9 K. Leichtweiss, Curves of constant width in the non-Euclidean geometry, Abh. Math. Sem. Univ. Hamburg 75 (2005), 257-284.   DOI
10 V. A. Toponogov, Differential Geometry of Curves and Surfaces, a Concise Guide, Birkhauser, Boston-Basel-Berlin, 2006.
11 L. A. Santalo, Note on convex curves in the hyperbolic plane, Bull. Amer. Math. Soc. 51 (1945), 405-412.   DOI
12 L. A. Santalo, Convexity in the hyperbolic plane, Univ. Nac. Tucuman Rev. Ser. A 19 (1969), 173-183.
13 I. Yaglom and V. Boltyanski, Convex Figures, Holt Rinehart and Winston, New York, 1961.