Browse > Article
http://dx.doi.org/10.4134/BKMS.b160330

A RANDOM DISPERSION SCHRÖDINGER EQUATION WITH NONLINEAR TIME-DEPENDENT LOSS/GAIN  

Jian, Hui (School of Mathematics and Statistics Hubei Key Laboratory of Engineering Modeling and Scientific Computing Huazhong University of Science and Technology)
Liu, Bin (School of Mathematics and Statistics Hubei Key Laboratory of Engineering Modelling and Scientific Computing Huazhong University of Science and Technology)
Publication Information
Bulletin of the Korean Mathematical Society / v.54, no.4, 2017 , pp. 1195-1219 More about this Journal
Abstract
In this paper, the limit behavior of solution for the $Schr{\ddot{o}}dinger$ equation with random dispersion and time-dependent nonlinear loss/gain: $idu+{\frac{1}{{\varepsilon}}}m({\frac{t}{{\varepsilon}^2}}){\partial}_{xx}udt+{\mid}u{\mid}^{2{\sigma}}udt+i{\varepsilon}a(t){\mid}u{\mid}^{2{\sigma}_0}udt=0$ is studied. Combining stochastic Strichartz-type estimates with $L^2$ norm estimates, we first derive the global existence for $L^2$ and $H^1$ solution of the stochastic $Schr{\ddot{o}}dinger$ equation with white noise dispersion and time-dependent loss/gain: $idu+{\Delta}u{\circ}d{\beta}+{\mid}u{\mid}^{2{\sigma}}udt+ia(t){\mid}u{\mid}^{2{\sigma}_0}udt=0$. Secondly, we prove rigorously the global diffusion-approximation limit of the solution for the former as ${\varepsilon}{\rightarrow}0$ in one-dimensional $L^2$ subcritical and critical cases.
Keywords
nonlinear $Schr{\ddot{o}}dinger$ equation; random dispersion; time-dependent nonlinear loss/gain; nonlinear fibre optics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Kh. Abdullaev, J. C. Bronski, and G. Papanicolaou, Soliton perturbations and the random Kepler problem, Phys. D 135 (2000), no. 3-4, 369-386.   DOI
2 F. Kh. Abdullaev and J. Garnier, Optical solitons in random media, in: Progress in Optics 48 (2005), 35-106.
3 G. P. Agrawal, Nonlinear Fiber Optics, Academic press, San Diego, 2001.
4 G. P. Agrawal, Application of Nonlinear Fiber Optics, Academic press, San Diego, 2001.
5 V. Barbu, M. Rockner, and D. Zhang, Stochastic nonlinear Schrodinger equations with linear multiplicative noise: rescaling approach, J. Nonlinear Sci. 24 (2014), no. 3, 383-409.   DOI
6 P. Antonelli, R. Carles, and C. Sparber, On nonlinear Schrodinger-type equations with nonlinear damping, Int. Math. Res. Not. 2015 (2015), no. 3, 740-762.   DOI
7 P. Antonelli and C. Sparber, Global well-posedness for cubic NLS with nonlinear damping, Comm. Partial Differential Equations 35 (2010), no. 12, 2310-2328.   DOI
8 A. Biswas, Optical soliton perturbation with nonlinear damping and saturable amplifiers, Math. Comput. Simullation 56 (2001), no. 6, 521-537.   DOI
9 A. de Bouard and A. Debussche, A stochastic nonlinear Schrodinger equation with multiplicative noise, Comm. Math. Phys. 205 (1999), no. 1, 161-181.   DOI
10 A. de Bouard and A. Debussche, On the effect of a noise on the solutions of supercritical Schrodinger equation, Probab. Theory Related Fields 123 (2002), no. 1, 76-96.   DOI
11 M. Darwich, On the $L^2$-critical nonlinear Schrodinger equation with a nonlinear damping, Commun. Pure Appl. Anal. 13 (2014), no. 6, 2377-2394.   DOI
12 A. de Bouard and A. Debussche, The stochastic nonlinear Schrodinger equation in $H^1$, Stochastic Anal. Appl. 21 (2003), no. 1, 97-126.   DOI
13 A. de Bouard and A. Debussche, Blowup for the supercritical Schrodinger equation with multiplicative noise, Ann. Probab. 33 (2005), no. 3, 1078-1110.   DOI
14 A. de Bouard and A. Debussche, The nonlinear Schrodinger equation with white noise dispersion, J. Funct. Anal. 259 (2010), no. 5, 1300-1321.   DOI
15 A. de Bouard and R. Fukuizumi, Representation formula for stochastic Schrodinger evolution equations and applications, Nonlinearity 25 (2012), no. 11, 2993-3022.   DOI
16 T. Cazenave, Semilinear Schrodinger equations, in: Courant Lecture Notes in Mathematics, American Mathematical Society, Courant Institute of Mathematical Sciences, 2003.
17 A. Debussche and L. DiMenza, Numerical simulation of focusing stochastic Schrodinger equation, Phys. D 162 (2002), no. 3-4, 131-154.   DOI
18 A. Debussche and Y. Tsutsumi, 1D quintic nonlinear Schrodinger equation with white noise dispersion, J. Math. Pures Appl. 96 (2011), no. 4, 363-376.   DOI
19 D. Y. Fang, L. Z. Zhang, and T. Zhang, A random dispersion Schrodinger equation with time-oscillating nonlinearity, J. Math. Anal. Appl. 418 (2014), no. 1, 403-414.   DOI
20 B. H. Feng, D. Zhao, and C. Y. Sun, The limit behavior of solutions for nonlinear Schrodinger equation including nonlinear loss/gain with variable coefficient, J. Math. Anal. Appl. 405 (2013), no. 1, 240-251.   DOI
21 B. H. Feng, D. Zhao, and C. Y. Sun, On the Cauchy problem for the nonlinear Schrodinger equations with timedependent linear loss/gain, J. Math. Anal. Appl. 416 (2014), no. 2, 901-923.   DOI
22 T. Kato, On nonlinear Schrodinger equations, Ann. Inst. H. Poincare, Phys. Theor. 46 (1987), no. 1, 113-129.
23 G. Fibich and M. Klein, Nonlinear-damping continuation of the nonlinear Schrodinger equationa numerical study, Phys. D 241 (2012), no. 5, 519-527.   DOI
24 H. Jian and B. Liu, A random Schrodinger equation with time-oscillating nonlinearity and linear dissipation/gain, Published online in Bull. Malays. Math. Sci. Soc. 2015 (2015), DOI:10.1007/s40840-015-0277-z.   DOI
25 Y. Kagan, A. E. Muryshev, and G. V. Shlyapnikov, Collapse and Bose-Einstein condensation in a trapped Bose gas with negative scattering length, Phys. Rev. Lett. 81 (1998), 933-937.   DOI
26 R. Marty, On a splitting scheme for the nonlinear Schrodinger equation in a random medium, Commun. Math. Sci. 4 (2006), no. 4, 679-705.   DOI
27 L. X. Meng, J. Y. Li, and J. Tao, Blow-up for the stochastic nonlinear Schrodinger equations with quadratic potential and additive noise, Bound. Value Probl. 2015 (2015), 18 pp.   DOI
28 M. Ohta and G. Todorova, Remarks on global existence and blow-up for damped nonlinear Schrodinger equations, Discrete Contin. Dyn. Syst. 23 (2009), no. 4, 1313-1325.   DOI
29 T. Passot, C. Sulem, and P. L. Sulem, Linear versus nonlinear dissipation for critical NLS equation, Phys. D 203 (2005), no. 3-4, 167-184.   DOI
30 M. Tsutsumi, Nonexistence of global solutions to the Cauchy problem for the damped nonlinear Schrodinger equations, SIAM J. Math. Anal. 15 (1984), no. 2, 357-366.   DOI