1 |
D. Eisenbud and J. Herzog, The classification of homogeneous Cohen-Macaulay rings of finite representation type, Math. Ann. 280 (1988), no. 2, 347-352.
DOI
|
2 |
D. Eisenbud, F. O. Schreyer, and J. Weyman, Resultants and Chow forms via exterior syzigies, J. Amer. Math. Soc. 16 (2003), no. 3, 537-579.
DOI
|
3 |
D. Faenzi and J. Pons-Llopis, The CM representation type of projective varieties, arXiv:1504.03819 [math.AG].
|
4 |
H. Grassmann, Die stereometrischen Gleichungen dritten grades, und die dadurch erzeugten Oberflachen, J. Reine Angew. Math. 49 (1855), 47-65.
|
5 |
Ph. Griffiths and J. Harris, On the Noether-Lefschetz Theorem and some remarks on codimension-two cycles, Math. Ann. 271 (1985), no. 1, 31-51.
DOI
|
6 |
R. Hartshorne, Algebraic Geometry, G.T.M. 52, Springer, 1977.
|
7 |
G. Horrocks, Vector bundles on the punctured spectrum of a local ring, Proc. London Math. Soc. 14 (1964), 689-713.
|
8 |
D. Huybrechts and M. Lehn, The Geometry of Moduli Spaces of Sheaves, Second edition, Cambridge Mathematical Library, Cambridge U.P., 2010.
|
9 |
Y. Drozd and G. M. Greuel, Tame and wild projective curves and classification of vector bundles, J. Algebra 246 (2001), no. 1, 1-54.
DOI
|
10 |
J. O. Kleppe and R. M. Miro-Roig, The representation type of determinantal varieties, Preprint.
|
11 |
R. M. Miro-Roig and J. Pons-Llopis, Representation Type of Rational ACM Surfaces X , Algebr. Represent. Theory 16 (2013), no. 4, 1135-1157.
DOI
|
12 |
R. M. Miro-Roig and J. Pons-Llopis, N-dimensional Fano varieties of wild representation type, J. Pure Appl. Algebra 218 (2014), no. 10, 1867-1884.
DOI
|
13 |
C. Okonek, M. Schneider, and H. Spindler, Vector bundles on complex projective spaces, Progress in Mathematics, 3. Birkhauser, Boston, Mass., 1980.
|
14 |
J. Pons-Llopis and F. Tonini, ACM bundles on del Pezzo surfaces, Matematiche (Catania) 64 (2009), no. 2, 177-211.
|
15 |
B. Ulrich, Gorenstein rings and modules with high number of generators. Math. Z. 188 (1984), no. 1, 23-32.
DOI
|
16 |
A. Beauville, Ulrich bundles on surfaces with , arXiv:1607.00895 [math.AG].
|
17 |
J. Backelin, J. Herzog, and H. Sanders, Matrix factorizations of homogeneous polynomials, in Algebra-some current trends (Varna, 1986), 1-33, L.N.M. 1352 Springer, 1988.
|
18 |
A. Beauville, Determinantal hypersurfaces, Michigan Math. J. 48 (2000), 39-64.
DOI
|
19 |
A. Beauville, Ulrich bundles on abelian surfaces, Proc. Amer. Math. Soc. 144 (2016), 4609-4611.
DOI
|
20 |
J. Brennan, J. Herzog, and B. Ulrich, Maximally generated Cohen-Macaulay modules, Math. Scand. 61 (1987), no. 2, 181-203.
DOI
|
21 |
M. Casanellas and R. Hartshorne, ACM bundles on cubic surfaces, J. Eur. Math. Soc. 13 (2011), no. 3, 709-731.
|
22 |
M. Casanellas, R. Hartshorne, F. Geiss, and F. O. Schreyer, Stable Ulrich bundles, Internat. J. Math. 23 (2012), no. 8, 1250083, 50 pp.
|
23 |
G. Casnati, Rank 2 stable Ulrich bundles on anticanonically embedded surfaces, to appear in Bull. Aust. Math. Soc..
|
24 |
M. F. Atiyah, Vector bundles over an elliptic curves, Proc. Lond. Math. Soc. 7 (1957), 414-452.
|
25 |
E. Coskun, R. S. Kulkarni, and Y. Mustopa, Pfaffian quartic surfaces and representations of Clifford algebras, Doc. Math. 17 (2012), 1003-1028.
|
26 |
E. Coskun, R. S. Kulkarni, and Y. Mustopa, The geometry of Ulrich bundles on del Pezzo surfaces, J. Algebra 375 (2013), 280-301.
DOI
|
27 |
L. Costa and R. M. Miro-Roig, GL(V )-invariant Ulrich bundles on Grassmannians, Math. Ann. 361 (2015), no. 1-2, 443-457.
DOI
|
28 |
L. Costa, R. M. Miro-Roig, and J. Pons-Llopis, The representation type of Segre varieties, Adv. Math. 230 (2012), no. 4-6, 1995-2013.
DOI
|