Browse > Article
http://dx.doi.org/10.4134/BKMS.b160257

EXAMPLES OF SMOOTH SURFACES IN ℙ3 WHICH ARE ULRICH-WILD  

Casnati, Gianfranco (Dipartimento di Scienze Matematiche Politecnico di Torino)
Publication Information
Bulletin of the Korean Mathematical Society / v.54, no.2, 2017 , pp. 667-677 More about this Journal
Abstract
Let $F{\subseteq}{\mathbb{P}}^3$ be a smooth surface of degree $3{\leq}d{\leq}9$ whose equation can be expressed as either the determinant of a $d{\times}d$ matrix of linear forms, or the pfaffian of a $(2d){\times}(2d)$ matrix of linear forms. In this paper we show that F supports families of dimension p of pairwise non-isomorphic, indecomposable, Ulrich bundles for arbitrary large p.
Keywords
vector bundle; Ulrich bundle; linear determinantal; linear pfaffian; representation type;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Eisenbud and J. Herzog, The classification of homogeneous Cohen-Macaulay rings of finite representation type, Math. Ann. 280 (1988), no. 2, 347-352.   DOI
2 D. Eisenbud, F. O. Schreyer, and J. Weyman, Resultants and Chow forms via exterior syzigies, J. Amer. Math. Soc. 16 (2003), no. 3, 537-579.   DOI
3 D. Faenzi and J. Pons-Llopis, The CM representation type of projective varieties, arXiv:1504.03819 [math.AG].
4 H. Grassmann, Die stereometrischen Gleichungen dritten grades, und die dadurch erzeugten Oberflachen, J. Reine Angew. Math. 49 (1855), 47-65.
5 Ph. Griffiths and J. Harris, On the Noether-Lefschetz Theorem and some remarks on codimension-two cycles, Math. Ann. 271 (1985), no. 1, 31-51.   DOI
6 R. Hartshorne, Algebraic Geometry, G.T.M. 52, Springer, 1977.
7 G. Horrocks, Vector bundles on the punctured spectrum of a local ring, Proc. London Math. Soc. 14 (1964), 689-713.
8 D. Huybrechts and M. Lehn, The Geometry of Moduli Spaces of Sheaves, Second edition, Cambridge Mathematical Library, Cambridge U.P., 2010.
9 Y. Drozd and G. M. Greuel, Tame and wild projective curves and classification of vector bundles, J. Algebra 246 (2001), no. 1, 1-54.   DOI
10 J. O. Kleppe and R. M. Miro-Roig, The representation type of determinantal varieties, Preprint.
11 R. M. Miro-Roig and J. Pons-Llopis, Representation Type of Rational ACM Surfaces X ${\subseteq}{\mathbb{P}}^4$, Algebr. Represent. Theory 16 (2013), no. 4, 1135-1157.   DOI
12 R. M. Miro-Roig and J. Pons-Llopis, N-dimensional Fano varieties of wild representation type, J. Pure Appl. Algebra 218 (2014), no. 10, 1867-1884.   DOI
13 C. Okonek, M. Schneider, and H. Spindler, Vector bundles on complex projective spaces, Progress in Mathematics, 3. Birkhauser, Boston, Mass., 1980.
14 J. Pons-Llopis and F. Tonini, ACM bundles on del Pezzo surfaces, Matematiche (Catania) 64 (2009), no. 2, 177-211.
15 B. Ulrich, Gorenstein rings and modules with high number of generators. Math. Z. 188 (1984), no. 1, 23-32.   DOI
16 A. Beauville, Ulrich bundles on surfaces with $p_g\;=\;q\;=\;0$, arXiv:1607.00895 [math.AG].
17 J. Backelin, J. Herzog, and H. Sanders, Matrix factorizations of homogeneous polynomials, in Algebra-some current trends (Varna, 1986), 1-33, L.N.M. 1352 Springer, 1988.
18 A. Beauville, Determinantal hypersurfaces, Michigan Math. J. 48 (2000), 39-64.   DOI
19 A. Beauville, Ulrich bundles on abelian surfaces, Proc. Amer. Math. Soc. 144 (2016), 4609-4611.   DOI
20 J. Brennan, J. Herzog, and B. Ulrich, Maximally generated Cohen-Macaulay modules, Math. Scand. 61 (1987), no. 2, 181-203.   DOI
21 M. Casanellas and R. Hartshorne, ACM bundles on cubic surfaces, J. Eur. Math. Soc. 13 (2011), no. 3, 709-731.
22 M. Casanellas, R. Hartshorne, F. Geiss, and F. O. Schreyer, Stable Ulrich bundles, Internat. J. Math. 23 (2012), no. 8, 1250083, 50 pp.
23 G. Casnati, Rank 2 stable Ulrich bundles on anticanonically embedded surfaces, to appear in Bull. Aust. Math. Soc..
24 M. F. Atiyah, Vector bundles over an elliptic curves, Proc. Lond. Math. Soc. 7 (1957), 414-452.
25 E. Coskun, R. S. Kulkarni, and Y. Mustopa, Pfaffian quartic surfaces and representations of Clifford algebras, Doc. Math. 17 (2012), 1003-1028.
26 E. Coskun, R. S. Kulkarni, and Y. Mustopa, The geometry of Ulrich bundles on del Pezzo surfaces, J. Algebra 375 (2013), 280-301.   DOI
27 L. Costa and R. M. Miro-Roig, GL(V )-invariant Ulrich bundles on Grassmannians, Math. Ann. 361 (2015), no. 1-2, 443-457.   DOI
28 L. Costa, R. M. Miro-Roig, and J. Pons-Llopis, The representation type of Segre varieties, Adv. Math. 230 (2012), no. 4-6, 1995-2013.   DOI