Browse > Article
http://dx.doi.org/10.4134/BKMS.2014.51.4.1023

PARALLEL SECTIONS HOMOTHETY BODIES WITH MINIMAL MAHLER VOLUME IN ℝn  

Lin, Youjiang (School of Mathematical Sciences Peking University, Department of Mathematics Shanghai University)
Leng, Gangsong (Department of Mathematics Shanghai University)
Publication Information
Bulletin of the Korean Mathematical Society / v.51, no.4, 2014 , pp. 1023-1029 More about this Journal
Abstract
In the paper, we define a class of convex bodies in $\mathbb{R}^n$-parallel sections homothety bodies, and for some special parallel sections homothety bodies, we prove that n-cubes have the minimal Mahler volume.
Keywords
convex body; polar body; parallel sections homothety bodies; Mahler conjecture; cylinder;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Reisner, Minimal volume product in Banach spaces with a 1-unconditional basis, J. London Math. Soc. 36 (1987), no.1, 126-136.
2 J. Saint-Raymond, Sur le volume des corps convexes sym etriques, Seminaire d'initiation 'al' Analyse, 1980/1981, Publ. Math. Univ. Pierre et Marie Curie, Paris, 1981, 1-25.
3 R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia Math. Appl., vol. 44, Cambridge University Press, Cambridge, 1993.
4 T. Tao, Structure and Randomness, Pages from year one of a mathematical blog. American Mathematical Society, Providence, RI, 2008.
5 Y. Gordon, M. Meyer, and S. Reisner, Zonoids with minimal volume-product-a new proof, Proc. Amer. Math. Soc. 104 (1988), no. 1, 273-276.
6 J. Kim and S. Reisner, Local minimality of the volume-product at the simplex, Mathe-matika, in press.
7 G. Kuperberg, From the Mahler conjecture to Gauss linking integrals, Geom. Funct. Anal. 18 (2008), no. 3, 870-892.   DOI
8 Y. Lin and G. Leng, Convex bodies with minimal volume product in $\mathbb{R}^2$-a new proof, Discrete Math. 310 (2010), no. 21, 3018-3025.   DOI   ScienceOn
9 M. A. Lopez and S. Reisner, A special case of Mahler's conjecture, Discrete Comput. Geom. 20 (1998), no. 2, 163-177.   DOI
10 E. Lutwak, D. Yang, and G. Zhang, A volume inequality for polar bodies, J. Differential Geom. 84 (2010), no. 1, 163-178.   DOI
11 K. Mahler, Ein Ubertragungsprinzip fur konvexe Korper, Casopis Pest. Mat. Fys. 68 (1939), 93-102.
12 K. Mahler, Ein Minimalproblem fur konvexe Polygone, Mathematica (Zutphen) B. 7 (1939), 118-127.
13 M. Meyer, Une caracterisation volumique de certains espaces normes de dimension finie, Israel J. Math. 55 (1986), no. 3, 317-326.   DOI
14 M. Meyer, Convex bodies with minimal volume product in $\mathbb{R}^2$, Monatsh. Math. 112 (1991), no. 4, 297-301.   DOI
15 M. Meyer and S. Reisner, Shadow systems and volumes of polar convex bodies, Mathe-matika 53 (2006), no. 1, 129-148.
16 K. Ball, Mahlers conjecture and wavelets, Discrete Comput. Geom. 13 (1995), no. 3-4, 271-277.   DOI
17 S. Reisner, Random polytopes and the volume-product of symmetric convex bodies, Math. Scand. 57 (1985), no. 2, 386-392.   DOI
18 S. Reisner, Zonoids with minimal volume-product, Math. Z. 192 (1986), no. 3, 339-346.   DOI
19 S. Artstein, B. Klartag, and V. D. Milman, On the Santalo point of a function and a functional Santalo inequality, Mathematika 54 (2004), 33-48.
20 J. Bourgain and V. D. Milman, New volume ratio properties for convex symmetric bodies in $\mathbb{R}^n$, Invent. Math. 88 (1987), no. 2, 319-340.   DOI
21 S. Campi and P. Gronchi, Volume inequalities for $L_p$-zonotopes, Mathematika 53 (2006), no. 1, 71-80.   DOI
22 S. Campi and P. Gronchi, On volume product inequalities for convex sets, Proc. Amer. Math. Soc. 134 (2006), no. 8, 2393-2402.   DOI   ScienceOn
23 S. Campi and P. Gronchi, Extremal convex sets for Sylvester-Busemann type functionals, Appl. Anal. 85 (2006), no. 1-3, 129-141.
24 M. Fradelizi, Y. Gordon, M. Meyer, and S. Reisner, The case of equality for an inverse Santalo functional inequality, Adv. Geom. 10 (2010), no. 4, 621-630.
25 F. Nazarov, F. Petrov, D. Ryabogin, and A. Zvavitch, A remark on the Mahler conjecture: local minimality of the unit cube, Duke Math. J. 154 (2010), no. 3, 419-430.   DOI
26 R. J. Gardner, Geometric Tomography, Second edition. Encyclopedia of Mathematics and its Applications, 58. Cambridge University Press, Cambridge, 2006.