Browse > Article
http://dx.doi.org/10.4134/BKMS.2014.51.2.409

ON SUPERLINEAR p(x)-LAPLACIAN-LIKE PROBLEM WITHOUT AMBROSETTI AND RABINOWITZ CONDITION  

Bin, Ge (Department of Applied Mathematics Harbin Engineering University)
Publication Information
Bulletin of the Korean Mathematical Society / v.51, no.2, 2014 , pp. 409-421 More about this Journal
Abstract
This paper deals with the superlinear elliptic problem without Ambrosetti and Rabinowitz type growth condition of the form: $$\{-div\((1+\frac{|{\nabla}u|^{p(x)}}{\sqrt{1+|{\nabla}u|^{2p(x)}}}})|{\nabla}u|^{p(x)-2}{\nabla}u\)={\lambda}f(x,u)\;a.e.\;in\;{\Omega}\\u=0,\;on\;{\partial}{\Omega}$$ where ${\Omega}{\subset}R^N$ is a bounded domain with smooth boundary ${\partial}{\Omega}$, ${\lambda}$ > 0 is a parameter. The purpose of this paper is to obtain the existence results of nontrivial solutions for every parameter ${\lambda}$. Firstly, by using the mountain pass theorem a nontrivial solution is constructed for almost every parameter ${\lambda}$ > 0. Then we consider the continuation of the solutions. Our results are a generalization of that of Manuela Rodrigues.
Keywords
superlinear problem; p(x)-Laplacian; variational method; variable exponent Sobolev space;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal. 164 (2002), no. 3, 213-259.   DOI
2 Y. Chen, S. Levine, and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), no. 4, 1383-1406.   DOI   ScienceOn
3 L. Diening, Riesz potential and Sobolev embedding on generalized Lebesque and Sobolev space $L^{p({\cdot})}$ and $W^{k,p({\cdot})}$, Math. Nachr. 268 (2004), 31-43.   DOI   ScienceOn
4 D. E. Edmunds and J. Rakosnic, Sobolev embbeding with variable exponent II, Math. Nachr. 246/247 (2002), 53-67.   DOI
5 X. L. Fan and Q. H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), no. 8, 1843-1852.   DOI   ScienceOn
6 X. L. Fan and D. Zhao, On the generalized Orlicz-Sobolev spaces $W^{k,p(x)}({\Omega})$, J. Gansu Educ. College 12 (1998), no. 1, 1-6.
7 X. L. Fan and D. Zhao, On the space $L^{p(x)}({\Omega})$ and $W^{k,p(x)}({\Omega})$, J. Math. Anal. Appl. 263 (2001), no. 2, 424-446.   DOI   ScienceOn
8 X. L. Fan, Y. Z. Zhao, and D. Zhao, Compact imbedding theorems with symmetry of Strauss-Lions type for the space $W^{1,p(x)}({\Omega})$, J. Math. Anal. Appl. 255 (2001), no. 1, 333-348.   DOI   ScienceOn
9 C. Ji, On the superlinear problem involving the p(x)-Laplacian, Electron. J. Qual. Theory Differ. 40 (2011), 1-9.
10 O. Kovacik and J. Rakosuik, On spaces $L^{p(x)}({\Omega})$ and $W^{k,p(x)}({\Omega})$, Czechoslovak Math. J. 41 (1991), no. 4, 592-618.
11 M. M. Rodrigues, Multiplicity of solutions on a nonlinear eigenvalue problem for p(x)-Laplacian-like operators, Mediterr. J. Math. 9 (2012), no. 1, 211-222.   DOI
12 M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2000.
13 G. Wang and J. Wei, Steady state solutions of a reaction-diffusion system modeling chemotaxis, Math. Nachr. 233/234 (2002), 221-236.   DOI
14 M. Struwe and G. Tarantello, On multivortex solutions in Chern-Simons gauge theory, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 (1998), no. 1, 109-121.