Browse > Article
http://dx.doi.org/10.4134/BKMS.2012.49.2.395

AN INJECTIVITY THEOREM FOR CASSON-GORDON TYPE REPRESENTATIONS RELATING TO THE CONCORDANCE OF KNOTS AND LINKS  

Friedl, Stefan (Mathematisches Institut Universitat zu Koln)
Powell, Mark (Department of Mathematics Indiana University)
Publication Information
Bulletin of the Korean Mathematical Society / v.49, no.2, 2012 , pp. 395-409 More about this Journal
Abstract
In the study of homology cobordisms, knot concordance and link concordance, the following technical problem arises frequently: let ${\pi}$ be a group and let M ${\rightarrow}$ N be a homomorphism between projective $\mathbb{Z}[{\pi}]$-modules such that $\mathbb{Z}_p\;{\otimes}_{\mathbb{Z}[{\pi}]}M{\rightarrow}\mathbb{Z}_p{\otimes}_{\mathbb{Z}[{\pi}]}\;N$ is injective; for which other right $\mathbb{Z}[{\pi}]$-modules V is the induced map $V{\otimes}_{\mathbb{Z}[{\pi}]}\;M{\rightarrow}\;V{\otimes}_{\mathbb{Z}[{\pi}]}\;N$ also injective? Our main theorem gives a new criterion which combines and generalizes many previous results.
Keywords
knot concordance; link concordance; p groups; injectivity theorem;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Lang, Algebra, Graduate Texts in Mathematics, 211. Springer-Verlag, New York, 2002.
2 C. F. Letsche, An obstruction to slicing knots using the eta invariant, Math. Proc. Cambridge Philos. Soc. 128 (2000), no. 2, 301-319.   DOI   ScienceOn
3 J. Levine, Link invariants via the eta invariant, Comment. Math. Helv. 69 (1994), no. 1, 82-119.   DOI   ScienceOn
4 L. Smolinsky, Invariants of link cobordism, Proceedings of the 1987 Georgia Topology Conference (Athens, GA, 1987). Topology Appl. 32 (1989), no. 2, 161-168.
5 J. Stallings, Homology and central series of groups, J. Algebra 2 (1965), 170-181.   DOI
6 R. Strebel, Homological methods applied to the derived series of groups, Comment. Math. Helv. 49 (1974), 302-332.
7 J. C. Cha, Link concordance, homology cobordism, and Hirzebruch-type defects from iterated p-covers, J. Eur. Math. Soc. 12 (2010), no. 3, 555-610.
8 J. C. Cha and S. Friedl, Twisted torsion invariants and link concordance, To appear in Forum Mathematicum, Preprint: http://arxiv.org/abs/1001.0926, 2010.
9 J. C. Cha and K. H. Ko, Signature invariants of links from irregular covers and non- abelian covers, Math. Proc. Cambridge Philos. Soc. 127 (1999), no. 1, 67-81.   DOI   ScienceOn
10 J. C. Cha and K. H. Ko, Signature invariants of covering links, Trans. Amer. Math. Soc. 358 (2006), no. 8, 3399-3412.   DOI   ScienceOn
11 J. C. Cha and K. E. Orr, L(2)-signatures, homology localization and amenable groups, To appear in Communications on Pure and Applied Math., Preprint: arXiv:09103.3700, 2009.
12 T. D. Cochran, K. E. Orr, and P. Teichner, Knot concordance, Whitney towers and L(2) signatures, Ann. of Math. (2) 157 (2003), no. 2, 433-519.
13 S. Friedl and S. Vidussi, A survey of twisted Alexander polynomials, The Mathematics of Knots: Theory and Application (Contributions in Mathematical and Computational Sciences), editors: Markus Banagl and Denis Vogel (2010), 45-94.
14 S. Friedl, Eta invariants as sliceness obstructions and their relation to Casson-Gordon invariants, Algebr. Geom. Topol. 4 (2004), 893-934.   DOI
15 S. Friedl, Link concordance, boundary link concordance and eta-invariants, Math. Proc. Cambridge Philos. Soc. 138 (2005), no. 3, 437-460.   DOI   ScienceOn
16 S. Friedl and M. Powell, Links not concordant to the Hopf link, Preprint, 2011.
17 P. Hall, On the Finiteness of certain solvable groups, Proc. London Math. Soc. 3 (1959), no. 9, 595-622.
18 C. Herald, P. Kirk, and C. Livingston, Metabelian representations, twisted Alexander polynomials, knot slicing, and mutation, Mathematische Zeitschrift 265 (2010), no. 4, 925-949.   DOI   ScienceOn
19 A. Casson and C. M. Gordon, Cobordism of classical knots, A la Recherche de la Topolo- gie Perdue, Progr. Math. 62, 181-199, Birkhauser Boston, 1986.
20 M. Aschbacher, Finite Group Theory, Cambridge University Press, 1993.