Browse > Article
http://dx.doi.org/10.4134/BKMS.2010.47.4.815

ON HARMONICITY IN A DISC AND n-HARMONICITY  

Lee, Jae-Sung (DEPARTMENT OF MATHEMATICS SOGANG UNIVERSITY)
Publication Information
Bulletin of the Korean Mathematical Society / v.47, no.4, 2010 , pp. 815-823 More about this Journal
Abstract
Let ${\tau}\;{\neq}\;\delta_0$ be either a power bounded radial measure with compact support on the unit disc D with $\tau(D)\;=\;1$ such that there is a $\delta$ > 0 so that ${\mid}\hat{\tau}(s){\mid}\;{\neq}\;1$ for every $s\;{\in}\;\Sigma(\delta)$ \ {0,1}, or just a radial probability measure on D. Here, we provide a decomposition of the set X = {$h\;{\in}\;L^{\infty}(D)\;{\mid}\;lim_{n{\rightarrow}{\infty}}\;h\;*\;\tau^n$ exists}. Let $\tau_1$, ..., $\tau_n$ be measures on D with above mentioned properties. Here, we prove that if $f\;{in}\;L^{\infty}(D^n)$ satisfies an invariant volume mean value property with respect to $\tau_1$, ..., $\tau_n$, then f is n-harmonic.
Keywords
mean value property; harmonicity; n-harmonicity; convolution; spectrum;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 W. Rudin, Function Theory in the Unit Ball of $C^n$, Springer-Verlag, New York Inc., 1980.
2 P. Ahern, M. Flores, and W. Rudin, An invariant volume-mean-value property, J. Funct. Anal. 111 (1993), no. 2, 380–397.   DOI   ScienceOn
3 J. Arazy and M. Englis, Iterates and the boundary behavior of the Berezin transform, Ann. Inst. Fourier (Grenoble) 51 (2001), no. 4, 1101–1133.   DOI   ScienceOn
4 Y. Benyamini and Y. Weit, Harmonic analysis of spherical functions on SU(1, 1), Ann. Inst. Fourier (Grenoble) 42 (1992), no. 3, 671–694.   DOI
5 M. Englis, Functions invariant under the Berezin transform, J. Funct. Anal. 121 (1994), no. 1, 233–254.   DOI   ScienceOn
6 H. Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math. (2) 77 (1963), 335–386.   DOI
7 H. Furstenberg, Boundaries of Riemannian symmetric spaces, Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969–1970), pp. 359–377. Pure and Appl. Math., Vol. 8, Dekker, New York, 1972.
8 Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), no. 3, 313–328.   DOI
9 J. Lee, Weighted Berezin transform in the polydisc, J. Math. Anal. Appl. 338 (2008), no. 2, 1489–1493.   DOI   ScienceOn