Browse > Article
http://dx.doi.org/10.14348/molcells.2021.0138

Retinoid Metabolism in the Degeneration of Pten-Deficient Mouse Retinal Pigment Epithelium  

Kim, You-Joung (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
Park, Sooyeon (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
Ha, Taejeong (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
Kim, Seungbeom (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
Lim, Soyeon (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
You, Han (School of Life Sciences, Xiamen University)
Kim, Jin Woo (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
Abstract
In vertebrate eyes, the retinal pigment epithelium (RPE) provides structural and functional homeostasis to the retina. The RPE takes up retinol (ROL) to be dehydrogenated and isomerized to 11-cis-retinaldehyde (11-cis-RAL), which is a functional photopigment in mammalian photoreceptors. As excessive ROL is toxic, the RPE must also establish mechanisms to protect against ROL toxicity. Here, we found that the levels of retinol dehydrogenases (RDHs) are commonly decreased in phosphatase tensin homolog (Pten)-deficient mouse RPE, which degenerates due to elevated ROL and that can be rescued by feeding a ROL-free diet. We also identified that RDH gene expression is regulated by forkhead box O (FOXO) transcription factors, which are inactivated by hyperactive Akt in the Pten-deficient mouse RPE. Together, our findings suggest that a homeostatic pathway comprising PTEN, FOXO, and RDH can protect the RPE from ROL toxicity.
Keywords
forkhead box O; phosphatase tensin homolog; phosphoinositide 3-kinase-Akt pathway; retinal pigment epithelium; retinoids;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Finnemann, S.C. and Chang, Y. (2008). Photoreceptor-RPE interactions. In Visual Transduction and Non-Visual Light Perception, J. Tombran-Tink and C.J. Barnstable, eds. (Totowa, NJ: Humana Press), pp. 67-86.
2 Garita-Hernandez, M., Lampic, M., Chaffiol, A., Guibbal, L., Routet, F., Santos-Ferreira, T., Gasparini, S., Borsch, O., Gagliardi, G., Reichman, S., et al. (2019). Restoration of visual function by transplantation of optogenetically engineered photoreceptors. Nat. Commun. 10, 4524.   DOI
3 Imanishi, Y., Batten, M.L., Piston, D.W., Baehr, W., and Palczewski, K. (2004). Noninvasive two-photon imaging reveals retinyl ester storage structures in the eye. J. Cell Biol. 164, 373-383.   DOI
4 Jin, M., Li, S., Moghrabi, W.N., Sun, H., and Travis, G.H. (2005). Rpe65 is the retinoid isomerase in bovine retinal pigment epithelium. Cell 122, 449-459.   DOI
5 Kelley, M.W., Turner, J.K., and Reh, T.A. (1994). Retinoic acid promotes differentiation of photoreceptors in vitro. Development 120, 2091-2102.   DOI
6 Kim, J.W., Kang, K.H., Burrola, P., Mak, T.W., and Lemke, G. (2008). Retinal degeneration triggered by inactivation of PTEN in the retinal pigment epithelium. Genes Dev. 22, 3147-3157.   DOI
7 Krinsky, N.I. and Johnson, E.J. (2005). Carotenoid actions and their relation to health and disease. Mol. Aspects Med. 26, 459-516.   DOI
8 Le, D., Lim, S., Min, K.W., Park, J.W., Kim, Y., Ha, T., Moon, K.H., Wagner, K.U., and Kim, J.W. (2021). Tsg101 is necessary for the establishment and maintenance of mouse retinal pigment epithelial cell polarity. Mol. Cells 44, 168-178.   DOI
9 Lee, E.J., Kim, N., Kang, K.H., and Kim, J.W. (2011). Phosphorylation/inactivation of PTEN by Akt-independent PI3K signaling in retinal pigment epithelium. Biochem. Biophys. Res. Commun. 414, 384-389.   DOI
10 Hess, A.F. and Myers, V.C. (1919). Carotinemia: a new clinical picture. JAMA 73, 1743-1745.   DOI
11 Brunet, A., Datta, S.R., and Greenberg, M.E. (2001). Transcriptiondependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr. Opin. Neurobiol. 11, 297-305.   DOI
12 Ferreira, R., Napoli, J., Enver, T., Bernardino, L., and Ferreira, L. (2020). Advances and challenges in retinoid delivery systems in regenerative and therapeutic medicine. Nat. Commun. 11, 4265.   DOI
13 Kang, K.H., Lemke, G., and Kim, J.W. (2009). The PI3K-PTEN tug-of-war, oxidative stress and retinal degeneration. Trends Mol. Med. 15, 191-198.
14 Kim, Y.K., Wassef, L., Chung, S., Jiang, H., Wyss, A., Blaner, W.S., and Quadro, L. (2011). β-Carotene and its cleavage enzyme β-carotene-15,15'-oxygenase (CMOI) affect retinoid metabolism in developing tissues. FASEB J. 25, 1641-1652.   DOI
15 Morimura, H., Fishman, G.A., Grover, S.A., Fulton, A.B., Berson, E.L., and Dryja, T.P. (1998). Mutations in the RPE65 gene in patients with autosomal recessive retinitis pigmentosa or leber congenital amaurosis. Proc. Natl. Acad. Sci. U. S. A. 95, 3088-3093.   DOI
16 Parish, C.A., Hashimoto, M., Nakanishi, K., Dillon, J., and Sparrow, J. (1998). Isolation and one-step preparation of A2E and iso-A2E, fluorophores from human retinal pigment epithelium. Proc. Natl. Acad. Sci. U. S. A. 95, 14609-14613.   DOI
17 Michalik, L. and Wahli, W. (2007). Guiding ligands to nuclear receptors. Cell 129, 649-651.   DOI
18 Leid, M., Kastner, P., and Chambon, P. (1992). Multiplicity generates diversity in the retinoic acid signalling pathways. Trends Biochem. Sci. 17, 427-433.   DOI
19 Liden, M. and Eriksson, U. (2006). Understanding retinol metabolism: structure and function of retinol dehydrogenases. J. Biol. Chem. 281, 13001-13004.   DOI
20 Maden, M. (2002). Retinoid signalling in the development of the central nervous system. Nat. Rev. Neurosci. 3, 843-853.   DOI
21 Moon, K.H., Kim, H.T., Lee, D., Rao, M.B., Levine, E.M., Lim, D.S., and Kim, J.W. (2018). Differential expression of NF2 in neuroepithelial compartments is necessary for mammalian eye development. Dev. Cell 44, 13-28.e3.   DOI
22 Nagao, A. (2009). Absorption and function of dietary carotenoids. Forum Nutr. 61, 55-63.
23 Niederreither, K. and Dolle, P. (2008). Retinoic acid in development: towards an integrated view. Nat. Rev. Genet. 9, 541-553.   DOI
24 Radu, R.A., Mata, N.L., Bagla, A., and Travis, G.H. (2004). Light exposure stimulates formation of A2E oxiranes in a mouse model of Stargardt's macular degeneration. Proc. Natl. Acad. Sci. U. S. A. 101, 5928-5933.   DOI
25 Omenn, G.S., Goodman, G.E., Thornquist, M.D., Balmes, J., Cullen, M.R., Glass, A., Keogh, J.P., Meyskens, F.L., Valanis, B., Williams, J.H., et al. (1996). Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N. Engl. J. Med. 334, 1150-1155.   DOI
26 Pares, X., Farres, J., Kedishvili, N., and Duester, G. (2008). Medium- and short-chain dehydrogenase/reductase gene and protein families: medium-chain and short-chain dehydrogenases/reductases in retinoid metabolism. Cell. Mol. Life Sci. 65, 3936-3949.   DOI
27 Saari, J.C., Bredberg, D.L., and Farrell, D.F. (1993). Retinol esterification in bovine retinal pigment epithelium: reversibility of lecithin:retinol acyltransferase. Biochem. J. 291 (Pt 3), 697-700.   DOI
28 Tran, H., Brunet, A., Grenier, J.M., Datta, S.R., Fornace, A.J., Jr., DiStefano, P.S., Chiang, L.W., and Greenberg, M.E. (2002). DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 296, 530-534.   DOI
29 Redmond, T.M., Yu, S., Lee, E., Bok, D., Hamasaki, D., Chen, N., Goletz, P., Ma, J.X., Crouch, R.K., and Pfeifer, K. (1998). Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat. Genet. 20, 344-351.   DOI
30 Obsil, T. and Obsilova, V. (2011). Structural basis for DNA recognition by FOXO proteins. Biochim. Biophys. Acta 1813, 1946-1953.   DOI
31 Richter, C., Gogvadze, V., Laffranchi, R., Schlapbach, R., Schweizer, M., Suter, M., Walter, P., and Yaffee, M. (1995). Oxidants in mitochondria: from physiology to diseases. Biochim. Biophys. Acta 1271, 67-74.   DOI
32 Saari, J.C. and Bredberg, D.L. (1989). Lecithin:retinol acyltransferase in retinal pigment epithelial microsomes. J. Biol. Chem. 264, 8636-8640.   DOI
33 Ruiz, A., Ghyselinck, N.B., Mata, N., Nusinowitz, S., Lloyd, M., Dennefeld, C., Chambon, P., and Bok, D. (2007). Somatic ablation of the Lrat gene in the mouse retinal pigment epithelium drastically reduces its retinoid storage. Invest. Ophthalmol. Vis. Sci. 48, 5377-5387.   DOI
34 Putting, B.J., Zweypfenning, R.C., Vrensen, G.F., Oosterhuis, J.A., and van Best, J.A. (1992). Blood-retinal barrier dysfunction at the pigment epithelium induced by blue light. Invest. Ophthalmol. Vis. Sci. 33, 3385-3393.
35 Cunningham, T.J. and Duester, G. (2015). Mechanisms of retinoic acid signalling and its roles in organ and limb development. Nat. Rev. Mol. Cell Biol. 16, 110-123.   DOI
36 Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group (1994). The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N. Engl. J. Med. 330, 1029-1035.   DOI
37 Bainbridge, J.W., Smith, A.J., Barker, S.S., Robbie, S., Henderson, R., Balaggan, K., Viswanathan, A., Holder, G.E., Stockman, A., Tyler, N., et al. (2008). Effect of gene therapy on visual function in Leber's congenital amaurosis. N. Engl. J. Med. 358, 2231-2239.   DOI
38 Brown, E.E., DeWeerd, A.J., Ildefonso, C.J., Lewin, A.S., and Ash, J.D. (2019). Mitochondrial oxidative stress in the retinal pigment epithelium (RPE) led to metabolic dysfunction in both the RPE and retinal photoreceptors. Redox Biol. 24, 101201.   DOI
39 Brunet, A., Bonni, A., Zigmond, M.J., Lin, M.Z., Juo, P., Hu, L.S., Anderson, M.J., Arden, K.C., Blenis, J., and Greenberg, M.E. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857-868.   DOI
40 DiPalma, J.R. and Ritchie, D.M. (1977). Vitamin toxicity. Ann. Rev. Pharmacol. Toxicol. 17, 133-148.   DOI
41 Sahu, B. and Maeda, A. (2016). Retinol dehydrogenases regulate vitamin A metabolism for visual function. Nutrients 8, 746.   DOI
42 Sommer, A. (2008). Vitamin a deficiency and clinical disease: an historical overview. J. Nutr. 138, 1835-1839.   DOI
43 Stambolic, V., Suzuki, A., de la Pompa, J.L., Brothers, G.M., Mirtsos, C., Sasaki, T., Ruland, J., Penninger, J.M., Siderovski, D.P., and Mak, T.W. (1998). Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95, 29-39.   DOI
44 Thompson, B., Katsanis, N., Apostolopoulos, N., Thompson, D.C., Nebert, D.W., and Vasiliou, V. (2019). Genetics and functions of the retinoic acid pathway, with special emphasis on the eye. Hum. Genomics 13, 61.   DOI
45 von Lintig, J. and Vogt, K. (2000). Filling the gap in vitamin A research. Molecular identification of an enzyme cleaving beta-carotene to retinal. J. Biol. Chem. 275, 11915-11920.   DOI
46 Willbold, E., Rothermel, A., Tomlinson, S., and Layer, P.G. (2000). Muller glia cells reorganize reaggregating chicken retinal cells into correctly laminated in vitro retinae. Glia 29, 45-57.   DOI
47 de Oliveira, M.R., da Rocha, R.F., Pasquali, M.A.d.B., and Moreira, J.C.F. (2012). The effects of vitamin A supplementation for 3 months on adult rat nigrostriatal axis: Increased monoamine oxidase enzyme activity, mitochondrial redox dysfunction, increased β-amyloid1-40 peptide and TNF-α contents, and susceptibility of mitochondria to an in vitro H2O2 challenge. Brain Res. Bull. 87, 432-444.   DOI