Browse > Article
http://dx.doi.org/10.14348/molcells.2021.0053

Innate Lymphoid Cells in Tissue Homeostasis and Disease Pathogenesis  

Kim, Jihyun (Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine)
Ryu, Seungwon (Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine)
Kim, Hye Young (Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine)
Abstract
Innate lymphoid cells (ILCs) are the most recently discovered family of innate immune cells. ILCs can be categorized into three groups on the basis of the transcription factors that direct their functions and the cytokines they produce. Notably, these functions parallel the effector functions of T lymphocytes. ILCs play a frontline role in host defense and tissue homeostasis by responding rapidly to environmental factors, conducting effector responses in a tissue-specific manner, and interacting with hematopoietic and non-hematopoietic cells throughout the body. Moreover, recent studies reveal that ILCs are involved in development of various inflammatory diseases, such as respiratory diseases, autoimmune diseases, or cancer. In this review, we discuss the recent findings regarding the biology of ILCs in health and inflammatory diseases.
Keywords
development; homeostasis; inflammation; innate lymphoid cells; plasticity; tropism;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bhat, T.A., Panzica, L., Kalathil, S.G., and Thanavala, Y. (2015). Immune dysfunction in patients with chronic obstructive pulmonary disease. Ann. Am. Thorac. Soc. 12 Suppl 2, S169-S175.
2 Chea, S., Possot, C., Perchet, T., Petit, M., Cumano, A., and Golub, R. (2015). CXCR6 expression is important for retention and circulation of ILC precursors. Mediators Inflamm. 2015, 368427.   DOI
3 Bernink, J.H., Krabbendam, L., Germar, K., de Jong, E., Gronke, K., Kofoed-Nielsen, M., Munneke, J.M., Hazenberg, M.D., Villaudy, J., and Buskens, C.J. (2015). Interleukin-12 and-23 control plasticity of CD127+ group 1 and group 3 innate lymphoid cells in the intestinal lamina propria. Immunity 43, 146-160.   DOI
4 Kearley, J., Silver, J.S., Sanden, C., Liu, Z., Berlin, A.A., White, N., Mori, M., Pham, T.H., Ward, C.K., Criner, G.J., et al. (2015). Cigarette smoke silences innate lymphoid cell function and facilitates an exacerbated type I interleukin-33-dependent response to infection. Immunity 42, 566-579.   DOI
5 Kim, H.Y., Umetsu, D.T., and Dekruyff, R.H. (2016b). Innate lymphoid cells in asthma: will they take your breath away? Eur. J. Immunol. 46, 795-806.   DOI
6 Monticelli, L.A., Osborne, L.C., Noti, M., Tran, S.V., Zaiss, D.M., and Artis, D. (2015). IL-33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin-EGFR interactions. Proc. Natl. Acad. Sci. U. S. A. 112, 10762-10767.   DOI
7 Chang, Y.J., Kim, H.Y., Albacker, L.A., Baumgarth, N., McKenzie, A.N., Smith, D.E., Dekruyff, R.H., and Umetsu, D.T. (2011). Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat. Immunol. 12, 631-638.   DOI
8 Golebski, K., Layhadi, J.A., Sahiner, U., Steveling-Klein, E.H., Lenormand, M.M., Li, R.C.Y., Bal, S.M., Heesters, B.A., Vila-Nadal, G., Hunewald, O., et al. (2021). Induction of IL-10-producing type 2 innate lymphoid cells by allergen immunotherapy is associated with clinical response. Immunity 54, 291-307.e7.   DOI
9 Hazenberg, M.D., Haverkate, N.J.E., van Lier, Y.F., Spits, H., Krabbendam, L., Bemelman, W.A., Buskens, C.J., Blom, B., and Shikhagaie, M.M. (2019). Human ectoenzyme-expressing ILC3: immunosuppressive innate cells that are depleted in graft-versus-host disease. Blood Adv. 3, 3650-3660.   DOI
10 Morita, H., Moro, K., and Koyasu, S. (2016). Innate lymphoid cells in allergic and nonallergic inflammation. J. Allergy Clin. Immunol. 138, 1253-1264.   DOI
11 Possot, C., Schmutz, S., Chea, S., Boucontet, L., Louise, A., Cumano, A., and Golub, R. (2011). Notch signaling is necessary for adult, but not fetal, development of RORgammat(+) innate lymphoid cells. Nat. Immunol. 12, 949-958.   DOI
12 Trabanelli, S., Chevalier, M.F., Martinez-Usatorre, A., Gomez-Cadena, A., Salome, B., Lecciso, M., Salvestrini, V., Verdeil, G., Racle, J., Papayannidis, C., et al. (2017). Tumour-derived PGD2 and NKp30-B7H6 engagement drives an immunosuppressive ILC2-MDSC axis. Nat. Commun. 8, 593.   DOI
13 Smith, S.G., Chen, R., Kjarsgaard, M., Huang, C., Oliveria, J.P., O'Byrne, P.M., Gauvreau, G.M., Boulet, L.P., Lemiere, C., Martin, J., et al. (2016). Increased numbers of activated group 2 innate lymphoid cells in the airways of patients with severe asthma and persistent airway eosinophilia. J. Allergy Clin. Immunol. 137, 75-86.e8.   DOI
14 Spits, H. and Cupedo, T. (2012). Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu. Rev. Immunol. 30, 647-675.   DOI
15 Suzuki, M., Sze, M.A., Campbell, J.D., Brothers, J.F., Lenburg, M.E., McDonough, J.E., Elliott, W.M., Cooper, J.D., Spira, A., and Hogg, J.C. (2017). The cellular and molecular determinants of emphysematous destruction in COPD. Sci. Rep. 7, 9562.   DOI
16 Vivier, E., Artis, D., Colonna, M., Diefenbach, A., Di Santo, J.P., Eberl, G., Koyasu, S., Locksley, R.M., McKenzie, A.N.J., Mebius, R.E., et al. (2018). Innate lymphoid cells: 10 years on. Cell 174, 1054-1066.   DOI
17 Entwistle, L.J., Gregory, L.G., Oliver, R.A., Branchett, W.J., Puttur, F., and Lloyd, C.M. (2020). Pulmonary group 2 innate lymphoid cell phenotype is context specific: determining the effect of strain, location, and stimuli. Front. Immunol. 10, 3114.   DOI
18 O'Sullivan, T.E. (2019). Dazed and confused: NK cells. Front. Immunol. 10, 2235.   DOI
19 Park, S.M., Do-Thi, V.A., Lee, J.O., Lee, H., and Kim, Y.S. (2020). Interleukin-9 inhibits lung metastasis of melanoma through stimulating anti-tumor M1 macrophages. Mol. Cells 43, 479-490.   DOI
20 Perry, J.S., Han, S., Xu, Q., Herman, M.L., Kennedy, L.B., Csako, G., and Bielekova, B. (2012). Inhibition of LTi cell development by CD25 blockade is associated with decreased intrathecal inflammation in multiple sclerosis. Sci. Transl. Med. 4, 145ra106.   DOI
21 Rabe, K.F. and Watz, H. (2017). Chronic obstructive pulmonary disease. Lancet 389, 1931-1940.   DOI
22 Silver, J.S., Kearley, J., Copenhaver, A.M., Sanden, C., Mori, M., Yu, L., Pritchard, G.H., Berlin, A.A., Hunter, C.A., Bowler, R., et al. (2016). Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs. Nat. Immunol. 17, 626-635.   DOI
23 Tanriver, Y. and Diefenbach, A. (2014). Transcription factors controlling development and function of innate lymphoid cells. Int. Immunol. 26, 119-128.   DOI
24 van de Pavert, S.A., Olivier, B.J., Goverse, G., Vondenhoff, M.F., Greuter, M., Beke, P., Kusser, K., Hopken, U.E., Lipp, M., Niederreither, K., et al. (2009). Chemokine CXCL13 is essential for lymph node initiation and is induced by retinoic acid and neuronal stimulation. Nat. Immunol. 10, 1193-1199.   DOI
25 Walker, J.A., Clark, P.A., Crisp, A., Barlow, J.L., Szeto, A., Ferreira, A.C.F., Rana, B.M.J., Jolin, H.E., Rodriguez-Rodriguez, N., Sivasubramaniam, M., et al. (2019). Polychromic reporter mice reveal unappreciated innate lymphoid cell progenitor heterogeneity and elusive ILC3 progenitors in bone marrow. Immunity 51, 104-118.e7.   DOI
26 Peters, C.P., Mjosberg, J.M., Bernink, J.H., and Spits, H. (2016). Innate lymphoid cells in inflammatory bowel diseases. Immunol. Lett. 172, 124-131.   DOI
27 Salimi, M., Stoger, L., Liu, W., Go, S., Pavord, I., Klenerman, P., Ogg, G., and Xue, L. (2017). Cysteinyl leukotriene E4 activates human group 2 innate lymphoid cells and enhances the effect of prostaglandin D2 and epithelial cytokines. J. Allergy Clin. Immunol. 140, 1090-1100.e11.   DOI
28 Saranchova, I., Han, J., Zaman, R., Arora, H., Huang, H., Fenninger, F., Choi, K.B., Munro, L., Pfeifer, C.G., Welch, I., et al. (2018). Type 2 innate lymphocytes actuate immunity against tumours and limit cancer metastasis. Sci. Rep. 8, 2924.   DOI
29 Reich, D.S., Lucchinetti, C.F., and Calabresi, P.A. (2018). Multiple sclerosis. N. Engl. J. Med. 378, 169-180.   DOI
30 Lund, S.J., Portillo, A., Cavagnero, K., Baum, R.E., Naji, L.H., Badrani, J.H., Mehta, A., Croft, M., Broide, D.H., and Doherty, T.A. (2017). Leukotriene C4 potentiates IL-33-induced group 2 innate lymphoid cell activation and lung inflammation. J. Immunol. 199, 1096-1104.   DOI
31 Male, V., Nisoli, I., Kostrzewski, T., Allan, D.S.J., Carlyle, J.R., Lord, G.M., Wack, A., and Brady, H.J.M. (2014). The transcription factor E4bp4/Nfil3 controls commitment to the NK lineage and directly regulates Eomes and Id2 expression. J. Exp. Med. 211, 635-642.   DOI
32 Meininger, I., Carrasco, A., Rao, A., Soini, T., Kokkinou, E., and Mjosberg, J. (2020). Tissue-specific features of innate lymphoid cells. Trends Immunol. 41, 902-917.   DOI
33 Mjosberg, J. and Eidsmo, L. (2014). Update on innate lymphoid cells in atopic and non-atopic inflammation in the airways and skin. Clin. Exp. Allergy 44, 1033-1043.   DOI
34 Montaldo, E., Juelke, K., and Romagnani, C. (2015). Group 3 innate lymphoid cells (ILC3s): origin, differentiation, and plasticity in humans and mice. Eur. J. Immunol. 45, 2171-2182.   DOI
35 Monticelli, L.A., Sonnenberg, G.F., Abt, M.C., Alenghat, T., Ziegler, C.G.K., Doering, T.A., Angelosanto, J.M., Laidlaw, B.J., Yang, C.Y., Sathaliyawala, T., et al. (2011). Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat. Immunol. 12, 1045-1054.   DOI
36 Kim, J., Chang, Y., Bae, B., Sohn, K.H., Cho, S.H., Chung, D.H., Kang, H.R., and Kim, H.Y. (2019). Innate immune crosstalk in asthmatic airways: innate lymphoid cells coordinate polarization of lung macrophages. J. Allergy Clin. Immunol. 143, 1769-1782.e11.   DOI
37 Constantinides, M.G., Gudjonson, H., McDonald, B.D., Ishizuka, I.E., Verhoef, P.A., Dinner, A.R., and Bendelac, A. (2015). PLZF expression maps the early stages of ILC1 lineage development. Proc. Natl. Acad. Sci. U. S. A. 112, 5123-5128.   DOI
38 Eberl, G., Colonna, M., Di Santo, J.P., and McKenzie, A.N. (2015). Innate lymphoid cells: a new paradigm in immunology. Science 348, aaa6566.   DOI
39 Eisenring, M., vom Berg, J., Kristiansen, G., Saller, E., and Becher, B. (2010). IL-12 initiates tumor rejection via lymphoid tissue-inducer cells bearing the natural cytotoxicity receptor NKp46. Nat. Immunol. 11, 1030-1038.   DOI
40 Erle, D.J., Briskin, M.J., Butcher, E.C., Garcia-Pardo, A., Lazarovits, A.I., and Tidswell, M. (1994). Expression and function of the MAdCAM-1 receptor, integrin alpha 4 beta 7, on human leukocytes. J. Immunol. 153, 517-528.
41 Constantinides, M.G., McDonald, B.D., Verhoef, P.A., and Bendelac, A. (2014). A committed precursor to innate lymphoid cells. Nature 508, 397-401.   DOI
42 Cortez, V.S. and Colonna, M. (2016). Diversity and function of group 1 innate lymphoid cells. Immunol. Lett. 179, 19-24.   DOI
43 Dadi, S., Chhangawala, S., Whitlock, B.M., Franklin, R.A., Luo, C.T., Oh, S.A., Toure, A., Pritykin, Y., Huse, M., Leslie, C.S., et al. (2016). Cancer immunosurveillance by tissue-resident innate lymphoid cells and innatelike T cells. Cell 164, 365-377.   DOI
44 De Grove, K.C., Provoost, S., Verhamme, F.M., Bracke, K.R., Joos, G.F., Maes, T., and Brusselle, G.G. (2016). Characterization and quantification of innate lymphoid cell subsets in human lung. PLoS One 11, e0145961.   DOI
45 Deem, T.L. and Cook-Mills, J.M. (2004). Vascular cell adhesion molecule 1 (VCAM-1) activation of endothelial cell matrix metalloproteinases: role of reactive oxygen species. Blood 104, 2385-2393.   DOI
46 Lim, A.I., Menegatti, S., Bustamante, J., Le Bourhis, L., Allez, M., Rogge, L., Casanova, J.L., Yssel, H., and Di Santo, J.P. (2016). IL-12 drives functional plasticity of human group 2 innate lymphoid cells. J. Exp. Med. 213, 569-583.   DOI
47 Liu, T., Barrett, N.A., Kanaoka, Y., Yoshimoto, E., Garofalo, D., Cirka, H., Feng, C., and Boyce, J.A. (2018). Type 2 cysteinyl leukotriene receptors drive IL-33-dependent type 2 immunopathology and aspirin sensitivity. J. Immunol. 200, 915-927.   DOI
48 Kirchberger, S., Royston, D.J., Boulard, O., Thornton, E., Franchini, F., Szabady, R.L., Harrison, O., and Powrie, F. (2013). Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J. Exp. Med. 210, 917-931.   DOI
49 Klose, C.S., Kiss, E.A., Schwierzeck, V., Ebert, K., Hoyler, T., d'Hargues, Y., Goppert, N., Croxford, A.L., Waisman, A., Tanriver, Y., et al. (2013). A T-bet gradient controls the fate and function of CCR6-RORγt+ innate lymphoid cells. Nature 494, 261-265.   DOI
50 Kim, M.H., Taparowsky, E.J., and Kim, C.H. (2015). Retinoic acid differentially regulates the migration of innate lymphoid cell subsets to the gut. Immunity 43, 107-119.   DOI
51 Kim, H.Y., DeKruyff, R.H., and Umetsu, D.T. (2010). The many paths to asthma: phenotype shaped by innate and adaptive immunity. Nat. Immunol. 11, 577-584.   DOI
52 Moral, J.A., Leung, J., Rojas, L.A., Ruan, J., Zhao, J., Sethna, Z., Ramnarain, A., Gasmi, B., Gururajan, M., Redmond, D., et al. (2020). ILC2s amplify PD-1 blockade by activating tissue-specific cancer immunity. Nature 579, 130-135.   DOI
53 Panda, S.K. and Colonna, M. (2019). Innate lymphoid cells in mucosal immunity. Front. Immunol. 10, 861   DOI
54 Gasteiger, G., Fan, X., Dikiy, S., Lee, S.Y., and Rudensky, A.Y. (2015). Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science 350, 981-985.   DOI
55 Kwong, B., Rua, R., Gao, Y., Flickinger, J., Jr., Wang, Y., Kruhlak, M.J., Zhu, J., Vivier, E., McGavern, D.B., and Lazarevic, V. (2017). T-bet-dependent NKp46(+) innate lymphoid cells regulate the onset of TH17-induced neuroinflammation. Nat. Immunol. 18, 1117-1127.   DOI
56 Lambrecht, B.N. and Hammad, H. (2015). The immunology of asthma. Nat. Immunol. 16, 45-56.   DOI
57 Lapidot, T., Dar, A., and Kollet, O. (2005). How do stem cells find their way home? Blood 106, 1901-1910.   DOI
58 Lim, A.I. and Di Santo, J.P. (2019). ILC-poiesis: ensuring tissue ILC differentiation at the right place and time. Eur. J. Immunol. 49, 11-18.   DOI
59 Liu, T., Wu, J., Zhao, J., Wang, J., Zhang, Y., Liu, L., Cao, L., Liu, Y., and Dong, L. (2015). Type 2 innate lymphoid cells: a novel biomarker of eosinophilic airway inflammation in patients with mild to moderate asthma. Respir. Med. 109, 1391-1396.   DOI
60 Degn, M., Modvig, S., Dyring-Andersen, B., Bonefeld, C.M., Frederiksen, J.L., Geisler, C., and von Essen, M.R. (2016). Increased prevalence of lymphoid tissue inducer cells in the cerebrospinal fluid of patients with early multiple sclerosis. Mult. Scler. 22, 1013-1020.   DOI
61 Morita, H., Kubo, T., Ruckert, B., Ravindran, A., Soyka, M.B., Rinaldi, A.O., Sugita, K., Wawrzyniak, M., Wawrzyniak, P., Motomura, K., et al. (2019). Induction of human regulatory innate lymphoid cells from group 2 innate lymphoid cells by retinoic acid. J. Allergy Clin. Immunol. 143, 2190-2201.e9.   DOI
62 Diefenbach, A., Colonna, M., and Koyasu, S. (2014). Development, differentiation, and diversity of innate lymphoid cells. Immunity 41, 354-365.   DOI
63 Long, A., Dominguez, D., Qin, L., Chen, S., Fan, J., Zhang, M., Fang, D., Zhang, Y., Kuzel, T.M., and Zhang, B. (2018). Type 2 innate lymphoid cells impede IL-33-mediated tumor suppression. J. Immunol. 201, 3456-3464.   DOI
64 Patman, G. (2015). Immunology: gut migration of innate lymphoid cells. Nat. Rev. Gastroenterol. Hepatol. 12, 430.
65 Gao, Y., Souza-Fonseca-Guimaraes, F., Bald, T., Ng, S.S., Young, A., Ngiow, S.F., Rautela, J., Straube, J., Waddell, N., Blake, S.J., et al. (2017). Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nat. Immunol. 18, 1004-1015.   DOI
66 Everaere, L., Ait-Yahia, S., Molendi-Coste, O., Vorng, H., Quemener, S., LeVu, P., Fleury, S., Bouchaert, E., Fan, Y., Duez, C., et al. (2016). Innate lymphoid cells contribute to allergic airway disease exacerbation by obesity. J. Allergy Clin. Immunol. 138, 1309-1318.e11.   DOI
67 Filippi, M., Bar-Or, A., Piehl, F., Preziosa, P., Solari, A., Vukusic, S., and Rocca, M.A. (2018). Multiple sclerosis. Nat. Rev. Dis. Primers 4, 43.   DOI
68 Fuchs, A., Vermi, W., Lee, J.S., Lonardi, S., Gilfillan, S., Newberry, R.D., Cella, M., and Colonna, M. (2013). Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-gamma-producing cells. Immunity 38, 769-781.   DOI
69 Gross, C.C., Schulte-Mecklenbeck, A., Hanning, U., Posevitz-Fejfar, A., Korsukewitz, C., Schwab, N., Meuth, S.G., Wiendl, H., and Klotz, L. (2017). Distinct pattern of lesion distribution in multiple sclerosis is associated with different circulating T-helper and helper-like innate lymphoid cell subsets. Mult. Scler. 23, 1025-1030.   DOI
70 Wolterink, R.G., KleinJan, A., van Nimwegen, M., Bergen, I., de Bruijn, M., Levani, Y., and Hendriks, R.W. (2012). Pulmonary innate lymphoid cells are major producers of IL-5 and IL-13 in murine models of allergic asthma. Eur. J. Immunol. 42, 1106-1116.   DOI
71 Halim, T.Y., Steer, C.A., Matha, L., Gold, M.J., Martinez-Gonzalez, I., McNagny, K.M., McKenzie, A.N., and Takei, F. (2014). Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity 40, 425-435.   DOI
72 Kim, C.H., Hashimoto-Hill, S., and Kim, M. (2016a). Migration and tissue tropism of innate lymphoid cells. Trends Immunol. 37, 68-79.   DOI
73 Kim, H.Y., Lee, H.J., Chang, Y.J., Pichavant, M., Shore, S.A., Fitzgerald, K.A., Iwakura, Y., Israel, E., Bolger, K., Faul, J., et al. (2014). Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat. Med. 20, 54-61.   DOI
74 Luci, C., Reynders, A., Ivanov, I.I., Cognet, C., Chiche, L., Chasson, L., Hardwigsen, J., Anguiano, E., Banchereau, J., Chaussabel, D., et al. (2009). Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin. Nat. Immunol. 10, 75-82.   DOI
75 Scandella, E., Bolinger, B., Lattmann, E., Miller, S., Favre, S., Littman, D.R., Finke, D., Luther, S.A., Junt, T., and Ludewig, B. (2008). Restoration of lymphoid organ integrity through the interaction of lymphoid tissue-inducer cells with stroma of the T cell zone. Nat. Immunol. 9, 667-675.   DOI
76 Scanlon, S.T. and McKenzie, A.N. (2012). Type 2 innate lymphoid cells: new players in asthma and allergy. Curr. Opin. Immunol. 24, 707-712.   DOI
77 Serafini, N., Klein Wolterink, R.G., Satoh-Takayama, N., Xu, W., Vosshenrich, C.A., Hendriks, R.W., and Di Santo, J.P. (2014). Gata3 drives development of RORgammat+ group 3 innate lymphoid cells. J. Exp. Med. 211, 199-208.   DOI
78 Zeng, B., Shi, S., Ashworth, G., Dong, C., Liu, J., and Xing, F. (2019). ILC3 function as a double-edged sword in inflammatory bowel diseases. Cell Death Dis. 10, 315.   DOI
79 Wan, J., Wu, Y., Huang, L., Tian, Y., Ji, X., Abdelaziz, M.H., Cai, W., Dineshkumar, K., Lei, Y., Yao, S., et al. (2021). ILC2-derived IL-9 inhibits colorectal cancer progression by activating CD8(+) T cells. Cancer Lett. 502, 34-43.   DOI
80 Irshad, S., Flores-Borja, F., Lawler, K., Monypenny, J., Evans, R., Male, V., Gordon, P., Cheung, A., Gazinska, P., Noor, F., et al. (2017). RORγt+ innate lymphoid cells promote lymph node metastasis of breast cancers. Cancer Res. 77, 1083-1096.   DOI
81 Wang, S., Xia, P., Chen, Y., Qu, Y., Xiong, Z., Ye, B., Du, Y., Tian, Y., Yin, Z., Xu, Z., et al. (2017). Regulatory innate lymphoid cells control innate intestinal inflammation. Cell 171, 201-216.e18.   DOI
82 Wills-Karp, M. and Finkelman, F.D. (2011). Innate lymphoid cells wield a double-edged sword: type 2 cytokine-producing innate lymphoid cells are present in human and mouse lungs, where they contribute to both type 2 immune responses and tissue repair. Nat. Immunol. 12, 1025-1028.   DOI
83 Wolk, K., Kunz, S., Witte, E., Friedrich, M., Asadullah, K., and Sabat, R. (2004). IL-22 increases the innate immunity of tissues. Immunity 21, 241-254.   DOI
84 Xu, W., Domingues, R.G., Fonseca-Pereira, D., Ferreira, M., Ribeiro, H., Lopez-Lastra, S., Motomura, Y., Moreira-Santos, L., Bihl, F., Braud, V., et al. (2015). NFIL3 orchestrates the emergence of common helper innate lymphoid cell precursors. Cell Rep. 10, 2043-2054.   DOI
85 Yagi, R., Zhong, C., Northrup, D.L., Yu, F., Bouladoux, N., Spencer, S., Hu, G., Barron, L., Sharma, S., Nakayama, T., et al. (2014). The transcription factor GATA3 is critical for the development of all IL-7Ralpha-expressing innate lymphoid cells. Immunity 40, 378-388.   DOI
86 Zook, E.C. and Kee, B.L. (2016). Development of innate lymphoid cells. Nat. Immunol. 17, 775-782.   DOI
87 Gascoyne, D.M., Long, E., Veiga-Fernandes, H., de Boer, J., Williams, O., Seddon, B., Coles, M., Kioussis, D., and Brady, H.J.M. (2009). The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development. Nat. Immunol. 10, 1118-1124.   DOI
88 Zlotoff, D.A., Sambandam, A., Logan, T.D., Bell, J.J., Schwarz, B.A., and Bhandoola, A. (2010). CCR7 and CCR9 together recruit hematopoietic progenitors to the adult thymus. Blood 115, 1897-1905.   DOI
89 Hatfield, J.K. and Brown, M.A. (2015). Group 3 innate lymphoid cells accumulate and exhibit disease-induced activation in the meninges in EAE. Cell. Immunol. 297, 69-79.   DOI
90 Doherty, T.A. and Broide, D.H. (2019). Airway innate lymphoid cells in the induction and regulation of allergy. Allergol. Int. 68, 9-16.   DOI
91 Geiger, T.L., Abt, M.C., Gasteiger, G., Firth, M.A., O'Connor, M.H., Geary, C.D., O'Sullivan, T.E., van den Brink, M.R., Pamer, E.G., Hanash, A.M., et al. (2014). Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens. J. Exp. Med. 211, 1723-1731.   DOI
92 Ikutani, M., Yanagibashi, T., Ogasawara, M., Tsuneyama, K., Yamamoto, S., Hattori, Y., Kouro, T., Itakura, A., Nagai, Y., Takaki, S., et al. (2012). Identification of innate IL-5-producing cells and their role in lung eosinophil regulation and antitumor immunity. J. Immunol. 188, 703-713.   DOI
93 Bal, S.M., Bernink, J.H., Nagasawa, M., Groot, J., Shikhagaie, M.M., Golebski, K., van Drunen, C.M., Lutter, R., Jonkers, R.E., Hombrink, P., et al. (2016). IL-1beta, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nat. Immunol. 17, 636-645.   DOI
94 Bando, J.K., Liang, H.E., and Locksley, R.M. (2015). Identification and distribution of developing innate lymphoid cells in the fetal mouse intestine. Nat. Immunol. 16, 153-160.   DOI
95 Beasley, R. and Hancox, R.J. (2020). Reducing the burden of asthma: time to set research and clinical priorities. Lancet Respir. Med. 8, 943-944.   DOI
96 Moro, K., Kabata, H., Tanabe, M., Koga, S., Takeno, N., Mochizuki, M., Fukunaga, K., Asano, K., Betsuyaku, T., and Koyasu, S. (2016). Interferon and IL-27 antagonize the function of group 2 innate lymphoid cells and type 2 innate immune responses. Nat. Immunol. 17, 76-86.   DOI
97 Ni, L. and Dong, C. (2018). Roles of myeloid and lymphoid cells in the pathogenesis of chronic obstructive pulmonary disease. Front. Immunol. 9, 1431.   DOI