Browse > Article
http://dx.doi.org/10.14348/molcells.2021.2217

The Peroxisomal Localization of Hsd17b4 Is Regulated by Its Interaction with Phosphatidylserine  

Lee, Sang-Ah (School of Life Sciences, Gwangju Institute of Science and Technology (GIST))
Lee, Juyeon (School of Life Sciences, Gwangju Institute of Science and Technology (GIST))
Kim, Kwanhyeong (School of Life Sciences, Gwangju Institute of Science and Technology (GIST))
Moon, Hyunji (School of Life Sciences, Gwangju Institute of Science and Technology (GIST))
Min, Chanhyuk (School of Life Sciences, Gwangju Institute of Science and Technology (GIST))
Moon, Byeongjin (School of Life Sciences, Gwangju Institute of Science and Technology (GIST))
Kim, Deokhwan (School of Life Sciences, Gwangju Institute of Science and Technology (GIST))
Yang, Susumin (School of Life Sciences, Gwangju Institute of Science and Technology (GIST))
Park, Hyunjin (School of Life Sciences, Gwangju Institute of Science and Technology (GIST))
Lee, Gwangrog (School of Life Sciences, Gwangju Institute of Science and Technology (GIST))
Park, Raekil (Department of Biomedical Science and Engineering, GIST)
Park, Daeho (School of Life Sciences, Gwangju Institute of Science and Technology (GIST))
Abstract
Phosphatidylserine (PS), a negatively charged phospholipid exclusively located in the inner leaflet of the plasma membrane, is involved in various cellular processes such as blood coagulation, myoblast fusion, mammalian fertilization, and clearance of apoptotic cells. Proteins that specifically interact with PS must be identified to comprehensively understand the cellular processes involving PS. However, only a limited number of proteins are known to associate with PS. To identify PS-associating proteins, we performed a pulldown assay using streptavidin-coated magnetic beads on which biotin-linked PS was immobilized. Using this approach, we identified Hsd17b4, a peroxisomal protein, as a PS-associating protein. Hsd17b4 strongly associated with PS, but not with phosphatidylcholine or sphingomyelin, and the Scp-2-like domain of Hsd17b4 was responsible for this association. The association was disrupted by PS in liposomes, but not by free PS or the components of PS. In addition, translocation of PS to the outer leaflet of the plasma membrane enriched Hsd17b4 in peroxisomes. Collectively, this study suggests an unexpected role of PS as a regulator of the subcellular localization of Hsd17b4.
Keywords
efferocytosis; exposure; Hsd17b4; interaction; peroxisome; phosphatidylserine;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhu, Z., Chen, J., Wang, G., Elsherbini, A., Zhong, L., Jiang, X., Qin, H., Tripathi, P., Zhi, W., Spassieva, S.D., et al. (2019). Ceramide regulates interaction of Hsd17b4 with Pex5 and function of peroxisomes. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864, 1514-1524.   DOI
2 Zwaal, R.F., Comfurius, P., and Bevers, E.M. (1998). Lipid-protein interactions in blood coagulation. Biochim. Biophys. Acta 1376, 433-453.   DOI
3 Segawa, K. and Nagata, S. (2015). An apoptotic 'eat me' signal: phosphatidylserine exposure. Trends Cell Biol. 25, 639-650.   DOI
4 Stace, C.L. and Ktistakis, N.T. (2006). Phosphatidic acid- and phosphatidylserine-binding proteins. Biochim. Biophys. Acta 1761, 913-926.   DOI
5 Swairjo, M.A., Concha, N.O., Kaetzel, M.A., Dedman, J.R., and Seaton, B.A. (1995). Ca(2+)-bridging mechanism and phospholipid head group recognition in the membrane-binding protein annexin V. Nat. Struct. Biol. 2, 968-974.   DOI
6 Clark, M.R. (2011). Flippin' lipids. Nat. Immunol. 12, 373-375.   DOI
7 Moon, B., Lee, J., Lee, S.A., Min, C., Moon, H., Kim, D., Yang, S., Moon, H., Jeon, J., Joo, Y.E., et al. (2020a). Mertk interacts with Tim-4 to enhance Tim4-mediated efferocytosis. Cells 9, 1625.   DOI
8 Moon, H., Min, C., Kim, G., Kim, D., Kim, K., Lee, S.A., Moon, B., Yang, S., Lee, J., Yang, S.J., et al. (2020b). Crbn modulates calcium influx by regulating Orai1 during efferocytosis. Nat. Commun. 11, 5489.   DOI
9 Nagata, S., Suzuki, J., Segawa, K., and Fujii, T. (2016). Exposure of phosphatidylserine on the cell surface. Cell Death Differ. 23, 952-961.   DOI
10 Choi, Y., Shimogawa, H., Murakami, K., Ramdas, L., Zhang, W., Qin, J., and Uesugi, M. (2006). Chemical genetic identification of the IGF-linked pathway that is mediated by STAT6 and MFP2. Chem. Biol. 13, 241-249.   DOI
11 Boada-Romero, E., Martinez, J., Heckmann, B.L., and Green, D.R. (2020). The clearance of dead cells by efferocytosis. Nat. Rev. Mol. Cell Biol. 21, 398-414.
12 Otera, H., Setoguchi, K., Hamasaki, M., Kumashiro, T., Shimizu, N., and Fujiki, Y. (2002). Peroxisomal targeting signal receptor Pex5p interacts with cargoes and import machinery components in a spatiotemporally differentiated manner: conserved Pex5p WXXXF/Y motifs are critical for matrix protein import. Mol. Cell. Biol. 22, 1639-1655.   DOI
13 Otsuka, M., Kato, N., Ichimura, T., Abe, S., Tanaka, Y., Taniguchi, H., Hoshida, Y., Moriyama, M., Wang, Y., Shao, R.X., et al. (2005). Vitamin K2 binds 17beta-hydroxysteroid dehydrogenase 4 and modulates estrogen metabolism. Life Sci. 76, 2473-2482.   DOI
14 Kay, J.G. and Grinstein, S. (2013). Phosphatidylserine-mediated cellular signaling. Adv. Exp. Med. Biol. 991, 177-193.   DOI
15 Elliott, J.I., Surprenant, A., Marelli-Berg, F.M., Cooper, J.C., Cassady-Cain, R.L., Wooding, C., Linton, K., Alexander, D.R., and Higgins, C.F. (2005). Membrane phosphatidylserine distribution as a non-apoptotic signalling mechanism in lymphocytes. Nat. Cell Biol. 7, 808-816.   DOI
16 Fadok, V.A., Voelker, D.R., Campbell, P.A., Cohen, J.J., Bratton, D.L., and Henson, P.M. (1992). Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol. 148, 2207-2216.
17 Hanayama, R., Tanaka, M., Miwa, K., Shinohara, A., Iwamatsu, A., and Nagata, S. (2002). Identification of a factor that links apoptotic cells to phagocytes. Nature 417, 182-187.   DOI
18 Lee, J., Park, B., Moon, B., Park, J., Moon, H., Kim, K., Lee, S.A., Kim, D., Min, C., Lee, D.H., et al. (2019). A scaffold for signaling of Tim-4-mediated efferocytosis is formed by fibronectin. Cell Death Differ. 26, 1646-1655.   DOI
19 Qadri, S.M., Bissinger, R., Solh, Z., and Oldenborg, P.A. (2017). Eryptosis in health and disease: a paradigm shift towards understanding the (patho) physiological implications of programmed cell death of erythrocytes. Blood Rev. 31, 349-361.   DOI
20 Miyanishi, M., Tada, K., Koike, M., Uchiyama, Y., Kitamura, T., and Nagata, S. (2007). Identification of Tim4 as a phosphatidylserine receptor. Nature 450, 435-439.   DOI
21 Ravichandran, K.S. and Lorenz, U. (2007). Engulfment of apoptotic cells: signals for a good meal. Nat. Rev. Immunol. 7, 964-974.   DOI
22 Riedl, S., Rinner, B., Asslaber, M., Schaider, H., Walzer, S., Novak, A., Lohner, K., and Zweytick, D. (2011). In search of a novel target - phosphatidylserine exposed by non-apoptotic tumor cells and metastases of malignancies with poor treatment efficacy. Biochim. Biophys. Acta 1808, 2638-2645.   DOI
23 Rival, C.M., Xu, W., Shankman, L.S., Morioka, S., Arandjelovic, S., Lee, C.S., Wheeler, K.M., Smith, R.P., Haney, L.B., Isakson, B.E., et al. (2019). Phosphatidylserine on viable sperm and phagocytic machinery in oocytes regulate mammalian fertilization. Nat. Commun. 10, 4456.   DOI
24 Sakuragi, T., Kosako, H., and Nagata, S. (2019). Phosphorylation-mediated activation of mouse Xkr8 scramblase for phosphatidylserine exposure. Proc. Natl. Acad. Sci. U. S. A. 116, 2907-2912.   DOI
25 Santiago, C., Ballesteros, A., Martinez-Munoz, L., Mellado, M., Kaplan, G.G., Freeman, G.J., and Casasnovas, J.M. (2007). Structures of T cell immunoglobulin mucin protein 4 show a metal-Ion-dependent ligand binding site where phosphatidylserine binds. Immunity 27, 941-951.   DOI
26 Segawa, K., Kurata, S., Yanagihashi, Y., Brummelkamp, T.R., Matsuda, F., and Nagata, S. (2014). Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure. Science 344, 1164-1168.   DOI
27 Wang, Y., Subramanian, M., Yurdagul, A., Jr., Barbosa-Lorenzi, V.C., Cai, B., de Juan-Sanz, J., Ryan, T.A., Nomura, M., Maxfield, F.R., and Tabas, I. (2017). Mitochondrial fission promotes the continued clearance of apoptotic cells by macrophages. Cell 171, 331-345.e22.   DOI
28 van Meer, G., Voelker, D.R., and Feigenson, G.W. (2008). Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112-124.   DOI
29 Violante, S., Achetib, N., van Roermund, C.W.T., Hagen, J., Dodatko, T., Vaz, F.M., Waterham, H.R., Chen, H., Baes, M., Yu, C., et al. (2019). Peroxisomes can oxidize medium- and long-chain fatty acids through a pathway involving ABCD3 and HSD17B4. FASEB J. 33, 4355-4364.   DOI
30 Voges, D., Berendes, R., Burger, A., Demange, P., Baumeister, W., and Huber, R. (1994). Three-dimensional structure of membrane-bound annexin V. A correlative electron microscopy-X-ray crystallography study. J. Mol. Biol. 238, 199-213.   DOI
31 Yurdagul, A., Jr., Subramanian, M., Wang, X., Crown, S.B., Ilkayeva, O.R., Darville, L., Kolluru, G.K., Rymond, C.C., Gerlach, B.D., Zheng, Z., et al. (2020). Macrophage metabolism of apoptotic cell-derived arginine promotes continual efferocytosis and resolution of injury. Cell Metab. 31, 518-533.e10.   DOI
32 Min, C., Park, J., Kim, G., Moon, H., Lee, S.A., Kim, D., Moon, B., Yang, S., Lee, J., Kim, K., et al. (2020). Tim-4 functions as a scavenger receptor for phagocytosis of exogenous particles. Cell Death Dis. 11, 561.   DOI
33 Lemke, G. (2013). Biology of the TAM receptors. Cold Spring Harb. Perspect. Biol. 5, a009076.   DOI
34 Lentz, B.R. (2003). Exposure of platelet membrane phosphatidylserine regulates blood coagulation. Prog. Lipid Res. 42, 423-438.   DOI
35 Lomasney, J.W., Cheng, H.F., Roffler, S.R., and King, K. (1999). Activation of phospholipase C delta1 through C2 domain by a Ca(2+)-enzymephosphatidylserine ternary complex. J. Biol. Chem. 274, 21995-22001.   DOI
36 Park, D., Han, C.Z., Elliott, M.R., Kinchen, J.M., Trampont, P.C., Das, S., Collins, S., Lysiak, J.J., Hoehn, K.L., and Ravichandran, K.S. (2011). Continued clearance of apoptotic cells critically depends on the phagocyte Ucp2 protein. Nature 477, 220-224.   DOI
37 Park, D., Tosello-Trampont, A.C., Elliott, M.R., Lu, M., Haney, L.B., Ma, Z., Klibanov, A.L., Mandell, J.W., and Ravichandran, K.S. (2007). BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450, 430-434.   DOI
38 Pierce, S.B., Walsh, T., Chisholm, K.M., Lee, M.K., Thornton, A.M., Fiumara, A., Opitz, J.M., Levy-Lahad, E., Klevit, R.E., and King, M.C. (2010). Mutations in the DBP-deficiency protein HSD17B4 cause ovarian dysgenesis, hearing loss, and ataxia of Perrault Syndrome. Am. J. Hum. Genet. 87, 282-288.   DOI
39 Orr, J.W. and Newton, A.C. (1992). Interaction of protein kinase C with phosphatidylserine. 2. Specificity and regulation. Biochemistry 31, 4667-4673.   DOI