Browse > Article
http://dx.doi.org/10.14348/molcells.2021.0016

Biochemical Characterization of the Num1-Mdm36 Complex at the Mitochondria-Plasma Membrane Contact Site  

Won, Jongdae (Department of Chemistry, College of Natural Sciences, Seoul National University)
Choi, Yuri (Department of Chemistry, College of Natural Sciences, Seoul National University)
Yun, Yaejin (Department of Chemistry, College of Natural Sciences, Seoul National University)
Lee, Hyung Ho (Department of Chemistry, College of Natural Sciences, Seoul National University)
Abstract
In eukaryotic cells, organelles are distributed and positioned in proximity to each other through molecular tether proteins. Among these, the mitochondria-endoplasmic reticulum cortex anchor (MECA) is a well-known tethering complex in Saccharomyces cerevisiae that tethers mitochondria to the plasma membrane and plays a key role in mitochondrial fission. The main components of MECA are Num1 and Mdm36, and it is known that Mdm36 binds to Num1 to enhance mitochondrial tethering. To better understand the biochemical characteristics of the Num1-Mdm36 complex at the molecular level, we purified the coiled-coil domain of Num1, full-length Mdm36, and Num1-Mdm36 complex and identified the oligomeric state and stoichiometric characteristics of the Num1-Mdm36 complex by chemical crosslinking, size-exclusion chromatography coupled with multi-angle light scattering, and isothermal titration calorimetry. Mdm36 exists as a dimer and interacts preferentially with Num1 with a stoichiometry of 2:2, forming a heterotetrameric complex. Furthermore, we narrowed down the specific binding region of Num1, which is essential for interacting with Mdm36, and showed that their binding affinity is strong enough to tether both mitochondrial and plasma membranes. Our biochemical characterizations suggest a stoichiometric model of the Num1-Mdm36 complex at the mitochondria-plasma membrane contact site in budding yeast.
Keywords
Mdm36; mitochondria; Num1; plasma membrane; tethering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Eisenberg-Bord, M., Shai, N., Schuldiner, M., and Bohnert, M. (2016). A tether is a tether is a tether: tethering at membrane contact sites. Dev. Cell 39, 395-409.   DOI
2 Garcia De La Torre, J., Huertas, M.L., and Carrasco, B. (2000). Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys. J. 78, 719-730.   DOI
3 Hammermeister, M., Schodel, K., and Westermann, B. (2010). Mdm36 is a mitochondrial fission-promoting protein in Saccharomyces cerevisiae. Mol. Biol. Cell 21, 2443-2452.   DOI
4 Hayashi, T., Rizzuto, R., Hajnoczky, G., and Su, T.P. (2009). MAM: more than just a housekeeper. Trends Cell Biol. 19, 81-88.   DOI
5 Helle, S.C., Kanfer, G., Kolar, K., Lang, A., Michel, A.H., and Kornmann, B. (2013). Organization and function of membrane contact sites. Biochim. Biophys. Acta 1833, 2526-2541.   DOI
6 Huang, X., Jiang, C., Yu, L., and Yang, A. (2020). Current and emerging approaches for studying inter-organelle membrane contact sites. Front. Cell Dev. Biol. 8, 195.   DOI
7 Lackner, L.L., Ping, H., Graef, M., Murley, A., and Nunnari, J. (2013). Endoplasmic reticulum-associated mitochondria-cortex tether functions in the distribution and inheritance of mitochondria. Proc. Natl. Acad. Sci. U. S. A. 110, E458-E467.   DOI
8 Kakimoto, Y., Tashiro, S., Kojima, R., Morozumi, Y., Endo, T., and Tamura, Y. (2018). Visualizing multiple inter-organelle contact sites using the organelle-targeted split-GFP system. Sci. Rep. 8, 6175.   DOI
9 Kormanec, J., Schaaff-Gerstenschlager, I., Zimmermann, F.K., Perecko, D., and Kuntzel, H. (1991). Nuclear migration in Saccharomyces cerevisiae is controlled by the highly repetitive 313 kDa NUM1 protein. Mol. Gen. Genet. 230, 277-287.   DOI
10 Kraft, L.M. and Lackner, L.L. (2018). Mitochondrial anchors: positioning mitochondria and more. Biochem. Biophys. Res. Commun. 500, 2-8.   DOI
11 Ping, H.A., Kraft, L.M., Chen, W., Nilles, A.E., and Lackner, L.L. (2016). Num1 anchors mitochondria to the plasma membrane via two domains with different lipid binding specificities. J. Cell Biol. 213, 513-524.   DOI
12 Naon, D. and Scorrano, L. (2014). At the right distance: ER-mitochondria juxtaposition in cell life and death. Biochim. Biophys. Acta 1843, 2184-2194.   DOI
13 Nascimbeni, A.C., Giordano, F., Dupont, N., Grasso, D., Vaccaro, M.I., Codogno, P., and Morel, E. (2017). ER-plasma membrane contact sites contribute to autophagosome biogenesis by regulation of local PI3P synthesis. EMBO J. 36, 2018-2033.   DOI
14 Ouasti, S., Matarrese, P., Paddon, R., Khosravi-Far, R., Sorice, M., Tinari, A., Malorni, W., and Degli Esposti, M. (2007). Death receptor ligation triggers membrane scrambling between Golgi and mitochondria. Cell Death Differ. 14, 453-461.   DOI
15 Prinz, W.A., Toulmay, A., and Balla, T. (2020). The functional universe of membrane contact sites. Nat. Rev. Mol. Cell Biol. 21, 7-24.   DOI
16 Shai, N., Yifrach, E., van Roermund, C.W.T., Cohen, N., Bibi, C., IJlst, L., Cavellini, L., Meurisse, J., Schuster, R., Zada, L., et al. (2018). Systematic mapping of contact sites reveals tethers and a function for the peroxisome-mitochondria contact. Nat. Commun. 9, 1761.   DOI
17 Tang, X., Germain, B.S., and Lee, W.L. (2012). A novel patch assembly domain in Num1 mediates dynein anchoring at the cortex during spindle positioning. J. Cell Biol. 196, 743-756.   DOI
18 Valm, A.M., Cohen, S., Legant, W.R., Melunis, J., Hershberg, U., Wait, E., Cohen, A.R., Davidson, M.W., Betzig, E., and Lippincott-Schwartz, J. (2017). Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546, 162-167.   DOI
19 Travis, S.M., DAmico, K., Yu, I.M., McMahon, C., Hamid, S., Ramirez-Arellano, G., Jeffrey, P.D., and Hughson, F.M. (2020). Structural basis for the binding of SNAREs to the multisubunit tethering complex Dsl1. J. Biol. Chem. 295, 10125-10135.   DOI
20 Rizzuto, R., Pinton, P., Carrington, W., Fay, F.S., Fogarty, K.E., Lifshitz, L.M., Tuft, R.A., and Pozzan, T. (1998). Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280, 1763-1766.   DOI
21 Westermann, B. (2015). The mitochondria-plasma membrane contact site. Curr. Opin. Cell Biol. 35, 1-6.   DOI
22 de Brito, O.M. and Scorrano, L. (2008). Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605-610.   DOI
23 Booth, D.M., Enyedi, B., Geiszt, M., Varnai, P., and Hajnoczky, G. (2016). Redox nanodomains are induced by and control calcium signaling at the ER-mitochondrial interface. Mol. Cell 63, 240-248.   DOI
24 Cerveny, K.L., Studer, S.L., Jensen, R.E., and Sesaki, H. (2007). Yeast mitochondrial division and distribution require the cortical num1 protein. Dev. Cell 12, 363-375.   DOI
25 Chen, W., Ping, H.A., and Lackner, L.L. (2018). Direct membrane binding and self-interaction contribute to Mmr1 function in mitochondrial inheritance. Mol. Biol. Cell 29, 2346-2357.   DOI
26 Dong, D., Huang, X., Li, L., Mao, H., Mo, Y., Zhang, G., Zhang, Z., Shen, J., Liu, W., Wu, Z., et al. (2020). Super-resolution fluorescence-assisted diffraction computational tomography reveals the three-dimensional landscape of the cellular organelle interactome. Light Sci. Appl. 9, 11.   DOI