Browse > Article
http://dx.doi.org/10.14348/molcells.2020.0212

Expression of HYOU1 via Reciprocal Crosstalk between NSCLC Cells and HUVECs Control Cancer Progression and Chemoresistance in Tumor Spheroids  

Lee, Minji (Cancer Biology Research Laboratory, Institut Pasteur Korea)
Song, Yeonhwa (Cancer Biology Research Laboratory, Institut Pasteur Korea)
Choi, Inhee (Medicinal Chemistry, Institut Pasteur Korea)
Lee, Su-Yeon (Cancer Biology Research Laboratory, Institut Pasteur Korea)
Kim, Sanghwa (Cancer Biology Research Laboratory, Institut Pasteur Korea)
Kim, Se-Hyuk (Cancer Biology Research Laboratory, Institut Pasteur Korea)
Kim, Jiho (Screening Discovery Platform, Institut Pasteur Korea)
Seo, Haeng Ran (Cancer Biology Research Laboratory, Institut Pasteur Korea)
Abstract
Among all cancer types, lung cancer ranks highest worldwide in terms of both incidence and mortality. The crosstalk between lung cancer cells and their tumor microenvironment (TME) has begun to emerge as the "Achilles heel" of the disease and thus constitutes an attractive target for anticancer therapy. We previously revealed that crosstalk between lung cancer cells and endothelial cells (ECs) induces chemoresistance in multicellular tumor spheroids (MCTSs). In this study, we demonstrated that factors secreted in response to crosstalk between ECs and lung cancer cells play pivotal roles in the development of chemoresistance in lung cancer spheroids. We subsequently determined that the expression of hypoxia up-regulated protein 1 (HYOU1) in lung cancer spheroids was increased by factors secreted in response to crosstalk between ECs and lung cancer cells. Direct interaction between lung cancer cells and ECs also caused an elevation in the expression of HYOU1 in MCTSs. Inhibition of HYOU1 expression not only suppressed stemness and malignancy, but also facilitated apoptosis and chemosensitivity in lung cancer MCTSs. Inhibition of HYOU1 expression also significantly increased the expression of interferon signaling components in lung cancer cells. Moreover, the activation of the PI3K/AKT/mTOR pathway was involved in the HYOU1-induced aggression of lung cancer cells. Taken together, our results identify HYOU1, which is induced in response to crosstalk between ECs and lung cancer cells within the TME, as a potential therapeutic target for combating the aggressive behavior of cancer cells.
Keywords
chemoresistance; endothelial cells; hypoxia up-regulated protein 1; lung cancer; multicellular tumor spheroids;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hartel, F.V., Holl, M., Arshad, M., Aslam, M., Gunduz, D., Weyand, M., Micoogullari, M., Abdallah, Y., Piper, H.M., and Noll, T. (2010). Transient hypoxia induces ERK-dependent anti-apoptotic cell survival in endothelial cells. Am. J. Physiol. Cell Physiol. 298, C1501-C1509.   DOI
2 Hirschhaeuser, F., Menne, H., Dittfeld, C., West, J., Mueller-Klieser, W., and Kunz-Schughart, L.A. (2010). Multicellular tumor spheroids: an underestimated tool is catching up again. J. Biotechnol. 148, 3-15.   DOI
3 Hobeika, A.C., Subramaniam, P.S., and Johnson, H.M. (1997). IFNalpha induces the expression of the cyclin-dependent kinase inhibitor p21 in human prostate cancer cells. Oncogene 14, 1165-1170.   DOI
4 Ikeda, J., Kaneda, S., Kuwabara, K., Ogawa, S., Kobayashi, T., Matsumoto, M., Yura, T., and Yanagi, H. (1997). Cloning and expression of cDNA encoding the human 150 kDa oxygen-regulated protein, ORP150. Biochem. Biophys. Res. Commun. 230, 94-99.   DOI
5 Joshi, A., Pande, N., Noronha, V., Patil, V., Kumar, R., Chougule, A., Trivedi, V., Janu, A., Mahajan, A., and Prabhash, K. (2019). ROS1 mutation nonsmall cell lung cancer-access to optimal treatment and outcomes. Ecancermedicalscience 13, 900.   DOI
6 Joyce, J.A. (2005). Therapeutic targeting of the tumor microenvironment. Cancer Cell 7, 513-520.   DOI
7 Kim, S.H., Song, Y., and Seo, H.R. (2019). GSK-3beta regulates the endothelial-to-mesenchymal transition via reciprocal crosstalk between NSCLC cells and HUVECs in multicellular tumor spheroid models. J. Exp. Clin. Cancer Res. 38, 46.   DOI
8 Ghosh, D. and Parida, P. (2016). Interferon therapy in lung cancer: current perspectives. Curr. Cancer Ther. Rev. 12, 237-245.   DOI
9 Laetsch, T.W., DuBois, S.G., Mascarenhas, L., Turpin, B., Federman, N., Albert, C.M., Nagasubramanian, R., Davis, J.L., Rudzinski, E., Feraco, A.M., et al. (2018). Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: phase 1 results from a multicentre, open-label, phase 1/2 study. Lancet Oncol. 19, 705-714.   DOI
10 Lee, A.S. (2014). Glucose-regulated proteins in cancer: molecular mechanisms and therapeutic potential. Nat. Rev. Cancer 14, 263-276.   DOI
11 Li, X., Zhang, N.X., Ye, H.Y., Song, P.P., Chang, W., Chen, L., Wang, Z., Zhang, L., and Wang, N.N. (2019). HYOU1 promotes cell growth and metastasis via activating PI3K/AKT signaling in epithelial ovarian cancer and predicts poor prognosis. Eur. Rev. Med. Pharmacol. Sci. 23, 4126-4135.
12 Makowska, A., Wahab, L., Braunschweig, T., Kapetanakis, N.I., Vokuhl, C., Denecke, B., Shen, L., Busson, P., and Kontny, U. (2018). Interferon beta induces apoptosis in nasopharyngeal carcinoma cells via the TRAILsignaling pathway. Oncotarget 9, 14228-14250.   DOI
13 Lim, S.B., Yeo, T., Lee, W.D., Bhagat, A.A.S., Tan, S.J., Tan, D.S.W., Lim, W.T., and Lim, C.T. (2019). Addressing cellular heterogeneity in tumor and circulation for refined prognostication. Proc. Natl. Acad. Sci. U. S. A. 116, 17957-17962.   DOI
14 Liu, L., Zhang, H., Sun, L., Gao, Y., Jin, H., Liang, S., Wang, Y., Dong, M., Shi, Y., Li, Z., et al. (2010). ERK/MAPK activation involves hypoxia-induced MGr1-Ag/37LRP expression and contributes to apoptosis resistance in gastric cancer. Int. J. Cancer 127, 820-829.   DOI
15 Lynch, T.J., Bell, D.W., Sordella, R., Gurubhagavatula, S., Okimoto, R.A., Brannigan, B.W., Harris, P.L., Haserlat, S.M., Supko, J.G., Haluska, F.G., et al. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129-2139.   DOI
16 Marchetti, A., Felicioni, L., Malatesta, S., Grazia Sciarrotta, M., Guetti, L., Chella, A., Viola, P., Pullara, C., Mucilli, F., and Buttitta, F. (2011). Clinical features and outcome of patients with non-small-cell lung cancer harboring BRAF mutations. J. Clin. Oncol. 29, 3574-3579.   DOI
17 Meissner, F., Scheltema, R.A., Mollenkopf, H.J., and Mann, M. (2013). Direct proteomic quantification of the secretome of activated immune cells. Science 340, 475-478.   DOI
18 Nair, S., Mayotte, J., Lokshin, A., and Levitt, M. (1994). Induction of squamous differentiation by interferon beta in a human non-small-cell lung cancer cell line. J. Natl. Cancer Inst. 86, 378-383.   DOI
19 Pao, W., Miller, V., Zakowski, M., Doherty, J., Politi, K., Sarkaria, I., Singh, B., Heelan, R., Rusch, V., Fulton, L., et al. (2004). EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl. Acad. Sci. U. S. A. 101, 13306-13311.   DOI
20 Namba, T., Hoshino, T., Tanaka, K., Tsutsumi, S., Ishihara, T., Mima, S., Suzuki, K., Ogawa, S., and Mizushima, T. (2007). Up-regulation of 150-kDa oxygen-regulated protein by celecoxib in human gastric carcinoma cells. Mol. Pharmacol. 71, 860-870.   DOI
21 Park, E.C. and Rongo, C. (2016). The p38 MAP kinase pathway modulates the hypoxia response and glutamate receptor trafficking in aging neurons. Elife 5, e12010.   DOI
22 Park, J.E., Facciponte, J., Chen, X., MacDonald, I., Repasky, E.A., Manjili, M.H., Wang, X.Y., and Subjeck, J.R. (2006). Chaperoning function of stress protein grp170, a member of the hsp70 superfamily, is responsible for its immunoadjuvant activity. Cancer Res. 66, 1161-1168.   DOI
23 Pfaffenbach, K.T., Pong, M., Morgan, T.E., Wang, H., Ott, K., Zhou, B., Longo, V.D., and Lee, A.S. (2012). GRP78/BiP is a novel downstream target of IGF1 receptor mediated signaling. J. Cell. Physiol. 227, 3803-3811.   DOI
24 Shaw, A.T. and Solomon, B. (2011). Targeting anaplastic lymphoma kinase in lung cancer. Clin. Cancer Res. 17, 2081-2086.   DOI
25 Shaw, A.T., Solomon, B.J., Chiari, R., Riely, G.J., Besse, B., Soo, R.A., Kao, S., Lin, C.C., Bauer, T.M., Clancy, J.S., et al. (2019). Lorlatinib in advanced ROS1-positive non-small-cell lung cancer: a multicentre, open-label, single-arm, phase 1-2 trial. Lancet Oncol. 20, 1691-1701.   DOI
26 Roskoski, R., Jr. (2020). Properties of FDA-approved small molecule protein kinase inhibitors: a 2020 update. Pharmacol. Res. 152, 104609.   DOI
27 Yu, X., Guo, C., Yi, H., Qian, J., Fisher, P.B., Subjeck, J.R., and Wang, X.Y. (2013b). A multifunctional chimeric chaperone serves as a novel immune modulator inducing therapeutic antitumor immunity. Cancer Res. 73, 2093-2103.   DOI
28 Zappa, C. and Mousa, S.A. (2016). Non-small cell lung cancer: current treatment and future advances. Transl. Lung Cancer Res. 5, 288-300.   DOI
29 Zhou, Y., Liao, Q., Li, X., Wang, H., Wei, F., Chen, J., Yang, J., Zeng, Z., Guo, X., Chen, P., et al. (2016). HYOU1, regulated by LPLUNC1, is up-regulated in nasopharyngeal carcinoma and associated with poor prognosis. J. Cancer 7, 367-376.   DOI
30 Zito Marino, F., Bianco, R., Accardo, M., Ronchi, A., Cozzolino, I., Morgillo, F., Rossi, G., and Franco, R. (2019). Molecular heterogeneity in lung cancer: from mechanisms of origin to clinical implications. Int. J. Med. Sci. 16, 981-989.   DOI
31 Song, Y., Kim, S.H., Kim, K.M., Choi, E.K., Kim, J., and Seo, H.R. (2016). Activated hepatic stellate cells play pivotal roles in hepatocellular carcinoma cell chemoresistance and migration in multicellular tumor spheroids. Sci. Rep. 6, 36750.   DOI
32 Thon, M., Hosoi, T., Yoshii, M., and Ozawa, K. (2014). Leptin induced GRP78 expression through the PI3K-mTOR pathway in neuronal cells. Sci. Rep. 4, 7096.   DOI
33 Song, Y., Lee, S.Y., Kim, A.R., Kim, S., Heo, J., Shum, D., Kim, S.H., Choi, I., Lee, Y.J., and Seo, H.R. (2019). Identification of radiation-induced EndMT inhibitors through cell-based phenomic screening. FEBS Open Bio 9, 82-91.   DOI
34 Stojadinovic, A., Hooke, J.A., Shriver, C.D., Nissan, A., Kovatich, A.J., Kao, T.C., Ponniah, S., Peoples, G.E., and Moroni, M. (2007). HYOU1/Orp150 expression in breast cancer. Med. Sci. Monit. 13, BR231-BR239.
35 Tamatani, M., Matsuyama, T., Yamaguchi, A., Mitsuda, N., Tsukamoto, Y., Taniguchi, M., Che, Y.H., Ozawa, K., Hori, O., Nishimura, H., et al. (2001). ORP150 protects against hypoxia/ischemia-induced neuronal death. Nat. Med. 7, 317-323.   DOI
36 Wu, S.D., Ma, Y.S., Fang, Y., Liu, L.L., Fu, D., and Shen, X.Z. (2012). Role of the microenvironment in hepatocellular carcinoma development and progression. Cancer Treat. Rev. 38, 218-225.   DOI
37 Tsukamoto, Y., Kuwabara, K., Hirota, S., Ikeda, J., Stern, D., Yanagi, H., Matsumoto, M., Ogawa, S., and Kitamura, Y. (1996). 150-kD oxygenregulated protein is expressed in human atherosclerotic plaques and allows mononuclear phagocytes to withstand cellular stress on exposure to hypoxia and modified low density lipoprotein. J. Clin. Invest. 98, 1930-1941.   DOI
38 Wang, H., Pezeshki, A.M., Yu, X., Guo, C., Subjeck, J.R., and Wang, X.Y. (2015). The endoplasmic reticulum chaperone GRP170: from immunobiology to cancer therapeutics. Front. Oncol. 4, 377.   DOI
39 Wang, X.Y., Kazim, L., Repasky, E.A., and Subjeck, J.R. (2003). Immunization with tumor-derived ER chaperone grp170 elicits tumor-specific CD8+ T-cell responses and reduces pulmonary metastatic disease. Int. J. Cancer 105, 226-231.   DOI
40 Yasuoka, Y., Naomoto, Y., Yamatsuji, T., Takaoka, M., Kimura, M., Uetsuka, H., Matsubara, N., Fujiwara, T., Gunduz, M., Tanaka, N., et al. (2001). Combination of tumor necrosis factor alpha and interferon alpha induces apoptotic cell death through a c-myc-dependent pathway in p53 mutant H226br non-small-cell lung cancer cell line. Exp. Cell Res. 271, 214-222.   DOI
41 Yu, H.A., Arcila, M.E., Rekhtman, N., Sima, C.S., Zakowski, M.F., Pao, W., Kris, M.G., Miller, V.A., Ladanyi, M., and Riely, G.J. (2013a). [Research Support, N.I.H., Extramural]. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin. Cancer Res. 19, 2240-2247.   DOI
42 Byun, Y., Choi, Y.C., Jeong, Y., Yoon, J., and Baek, K. (2020). Long noncoding RNA expression profiling reveals upregulation of uroplakin 1A and uroplakin 1A antisense RNA 1 under hypoxic conditions in lung cancer cells. Mol. Cells
43 Dai, R.Y., Chen, S.K., Yan, D.M., Chen, R., Lui, Y.P., Duan, C.Y., Li, J., He, T., and Li, H. (2010). PI3K/Akt promotes GRP78 accumulation and inhibits endoplasmic reticulum stress-induced apoptosis in HEK293 cells. Folia Biol. (Praha) 56, 37-46.   DOI
44 Camidge, D.R., Pao, W., and Sequist, L.V. (2014). [Review]. Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nat. Rev. Clin. Oncol. 11, 473-481.   DOI
45 Chae, H.J., Kim, S.C., Han, K.S., Chae, S.W., An, N.H., Kim, H.M., Kim, H.H., Lee, Z.H., and Kim, H.R. (2001). Hypoxia induces apoptosis by caspase activation accompanying cytochrome C release from mitochondria in MC3T3E1 osteoblasts. p38 MAPK is related in hypoxia-induced apoptosis. Immunopharmacol. Immunotoxicol. 23, 133-152.
46 Choi, S.H., Kim, A.R., Nam, J.K., Kim, J.M., Kim, J.Y., Seo, H.R., Lee, H.J., Cho, J., and Lee, Y.J. (2018). Tumour-vasculature development via endothelialto-mesenchymal transition after radiotherapy controls CD44v6(+) cancer cell and macrophage polarization. Nat. Commun. 9, 5108.   DOI
47 Ekman, S., Wynes, M.W., and Hirsch, F.R. (2012). The mTOR pathway in lung cancer and implications for therapy and biomarker analysis. J. Thorac. Oncol. 7, 947-953.   DOI
48 De Francesco, E.M., Maggiolini, M., Tanowitz, H.B., Sotgia, F., and Lisanti, M.P. (2017). Targeting hypoxic cancer stem cells (CSCs) with Doxycycline: implications for optimizing anti-angiogenic therapy. Oncotarget 8, 56126-56142.   DOI
49 Della Corte, C.M., Viscardi, G., Di Liello, R., Fasano, M., Martinelli, E., Troiani, T., Ciardiello, F., and Morgillo, F. (2018). Role and targeting of anaplastic lymphoma kinase in cancer. Mol. Cancer 17, 30.   DOI
50 Dudley, A.C. (2012). Tumor endothelial cells. Cold Spring Harb. Perspect. Med. 2, a006536.   DOI
51 Andreasson, C., Rampelt, H., Fiaux, J., Druffel-Augustin, S., and Bukau, B. (2010). The endoplasmic reticulum Grp170 acts as a nucleotide exchange factor of Hsp70 via a mechanism similar to that of the cytosolic Hsp110. J. Biol. Chem. 285, 12445-12453.   DOI
52 Gao, Y.Y., Liu, B.Q., Du, Z.X., Zhang, H.Y., Niu, X.F., and Wang, H.Q. (2010). Implication of oxygen-regulated protein 150 (ORP150) in apoptosis induced by proteasome inhibitors in human thyroid cancer cells. J. Clin. Endocrinol. Metab. 95, E319-E326.   DOI
53 Baik, C.S., Myall, N.J., and Wakelee, H.A. (2017). Targeting BRAF-mutant non-small cell lung cancer: from molecular profiling to rationally designed therapy. Oncologist 22, 786-796.   DOI
54 Farago, A.F., Taylor, M.S., Doebele, R.C., Zhu, V.W., Kummar, S., Spira, A.I., Boyle, T.A., Haura, E.B., Arcila, M.E., Benayed, R., et al. (2018). Clinicopathologic features of non-small-cell lung cancer harboring an NTRK gene fusion. JCO Precis. Oncol. 2018, PO.18.00037.
55 Fu, Y. and Lee, A.S. (2006). Glucose regulated proteins in cancer progression, drug resistance and immunotherapy. Cancer Biol. Ther. 5, 741-744.   DOI