Browse > Article
http://dx.doi.org/10.14348/molcells.2021.0246

Let Them Flourish for the First Weeks and Suffer Less  

Lee, Sun-Kyung (Department of Life Sciences, Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University)
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 Rhoads, J.M., Collins, J., Fatheree, N.Y., Hashmi, S.S., Taylor, C.M., Luo, M., Hoang, T.K., Gleason, W.A., Van Arsdall, M.R., Navarro, F., et al. (2018). Infant colic represents gut inflammation and dysbiosis. J. Pediatr. 203, 55-61.e3.   DOI
2 Duar, R.M., Casaburi, G., Mitchell, R.D., Scofield, L.N.C., Ortega Ramirez, C.A., Barile, D., Henrick, B.M., and Frese, S.A. (2020a). Comparative genome analysis of Bifidobacterium longum subsp. infantis strains reveals variation in human milk oligosaccharide utilization genes among commercial probiotics. Nutrients 12, 3247.   DOI
3 Henrick, B.M., Chew, S., Casaburi, G., Brown, H.K., Frese, S.A., Zhou, Y., Underwood, M.A., and Smilowitz, J.T. (2019). Colonization by B. infantis EVC001 modulates enteric inflammation in exclusively breastfed infants. Pediatr. Res. 86, 749-757.   DOI
4 Henrick, B.M., Rodriguez, L., Lakshmikanth, T., Pou, C., Henckel, E., Arzoomand, A., Olin, A., Wang, J., Mikes, J., Tan, Z., et al. (2021). Bifidobacteria-mediated immune system imprinting early in life. Cell 184, 3884-3898.e11.   DOI
5 Knoop, K.A., Gustafsson, J.K., McDonald, K.G., Kulkarni, D.H., Coughlin, P.E., McCrate, S., Kim, D., Hsieh, C.S., Hogan, S.P., Elson, C.O., et al. (2017). Microbial antigen encounter during a preweaning interval is critical for tolerance to gut bacteria. Sci. Immunol. 2, eaao1314.   DOI
6 Kostandy, R.R. and Ludington-Hoe, S.M. (2019). The evolution of the science of kangaroo (mother) care (skin-to-skin contact). Birth Defects Res. 111, 1032-1043.   DOI
7 Ryu, H., Kim, J., Kim, D., Lee, J.E., and Chung, Y. (2019). Cellular and molecular links between autoimmunity and lipid metabolism. Mol. Cells 42, 747-754.   DOI
8 Andreas, N.J., Kampmann, B., and Mehring Le-Doare, K. (2015). Human breast milk: a review on its composition and bioactivity. Early Hum. Dev. 91, 629-635.   DOI
9 Yi, J., Jung, J., Han, D., Surh, C.D., and Lee, Y.J. (2019). Segmented filamentous bacteria induce divergent populations of antigen-specific CD4 T cells in the small intestine. Mol. Cells 42, 228-236.   DOI
10 Arrieta, M.C., Arevalo, A., Stiemsma, L., Dimitriu, P., Chico, M.E., Loor, S., Vaca, M., Boutin, R.C.T., Morien, E., Jin, M., et al. (2018). Associations between infant fungal and bacterial dysbiosis and childhood atopic wheeze in a nonindustrialized setting. J. Allergy Clin. Immunol. 142, 424-434.e10.   DOI
11 Sundblad, V., Quintar, A.A., Morosi, L.G., Niveloni, S.I., Cabanne, A., Smecuol, E., Maurino, E., Marino, K.V., Bai, J.C., Maldonado, C.A., et al. (2018). Galectins in intestinal inflammation: galectin-1 expression delineates response to treatment in celiac disease patients. Front. Immunol. 9, 379.   DOI
12 Sela, D.A. and Mills, D.A. (2010). Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol. 18, 298-307.   DOI
13 Al Nabhani, Z., Dulauroy, S., Marques, R., Cousu, C., Al Bounny, S., Dejardin, F., Sparwasser, T., Berard, M., Cerf-Bensussan, N., and Eberl, G. (2019). A weaning reaction to microbiota is required for resistance to immunopathologies in the adult. Immunity 50, 1276-1288.e5.   DOI
14 Duar, R.M., Henrick, B.M., Casaburi, G., and Frese, S.A. (2020b). Integrating the ecosystem services framework to define dysbiosis of the breastfed infant gut: the role of B. infantis and human milk oligosaccharides. Front. Nutr. 7, 33.   DOI
15 Jung, G.T., Kim, K.P., and Kim, K. (2020). How to interpret and integrate multi-omics data at systems level. Anim. Cells Syst. (Seoul) 24, 1-7.   DOI
16 Lee, S.W., Park, H.J., Kim, S.H., Shin, S., Kim, K.H., Park, S.J., Hong, S., and Jeon, S.H. (2019). TLR4-dependent effects of ISAg treatment on conventional T cell polarization in vivo. Anim. Cells Syst. (Seoul) 23, 184-191.   DOI
17 Schaupp, L., Mut0h, S., Rogell, L., Kofoed-Branzk, M., Melchior, F., Lienenklaus, S., Ganal-Vonarburg, S.C., Klein, M., Guendel, F., Hain, T., et al. (2020). Microbiota-induced type I interferons instruct a poised basal state of dendritic cells. Cell 181, 1080-1096.e19.   DOI
18 Uhlen, M., Karlsson, M.J., Zhong, W., Tebani, A., Pou, C., Mikes, J., Lakshmikanth, T., Forsstrom, B., Edfors, F., Odeberg, J., et al. (2019). A genome-wide transcriptomic analysis of protein-coding genes in human blood cells. Science 366, eaax9198.   DOI
19 Yaseen, H., Butenko, S., Polishuk-Zotkin, I., Schif-Zuck, S., Perez-Saez, J.M., Rabinovich, G.A., and Ariel, A. (2020). Galectin-1 facilitates macrophage reprogramming and resolution of inflammation through IFN-β. Front. Pharmacol. 11, 901.   DOI
20 Stefan, K.L., Kim, M.V., Iwasaki, A., and Kasper, D.L. (2020). Commensal microbiota modulation of natural resistance to virus infection. Cell 183, 1312-1324.e10.   DOI
21 Vatanen, T., Kostic, A.D., d'Hennezel, E., Siljander, H., Franzosa, E.A., Yassour, M., Kolde, R., Vlamakis, H., Arthur, T.D., Hamalainen, A.M., et al. (2016). Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165, 842-853.   DOI
22 Yoshida, H. and Hunter, C.A. (2015). The immunobiology of interleukin-27. Annu. Rev. Immunol. 33, 417-443.   DOI