Browse > Article
http://dx.doi.org/10.14348/molcells.2020.0071

Genome-Wide Analysis Identifies NURR1-Controlled Network of New Synapse Formation and Cell Cycle Arrest in Human Neural Stem Cells  

Kim, Soo Min (Department of Brain Science, Ajou University School of Medicine)
Cho, Soo Young (National Cancer Center)
Kim, Min Woong (Department of Brain Science, Ajou University School of Medicine)
Roh, Seung Ryul (Department of Brain Science, Ajou University School of Medicine)
Shin, Hee Sun (Department of Brain Science, Ajou University School of Medicine)
Suh, Young Ho (Department of Biomedical Sciences, Seoul National University College of Medicine)
Geum, Dongho (Department of Medical Science, Korea University Medical School)
Lee, Myung Ae (Department of Brain Science, Ajou University School of Medicine)
Abstract
Nuclear receptor-related 1 (Nurr1) protein has been identified as an obligatory transcription factor in midbrain dopaminergic neurogenesis, but the global set of human NURR1 target genes remains unexplored. Here, we identified direct gene targets of NURR1 by analyzing genome-wide differential expression of NURR1 together with NURR1 consensus sites in three human neural stem cell (hNSC) lines. Microarray data were validated by quantitative PCR in hNSCs and mouse embryonic brains and through comparison to published human data, including genome-wide association study hits and the BioGPS gene expression atlas. Our analysis identified ~40 NURR1 direct target genes, many of them involved in essential protein modules such as synapse formation, neuronal cell migration during brain development, and cell cycle progression and DNA replication. Specifically, expression of genes related to synapse formation and neuronal cell migration correlated tightly with NURR1 expression, whereas cell cycle progression correlated negatively with it, precisely recapitulating midbrain dopaminergic development. Overall, this systematic examination of NURR1-controlled regulatory networks provides important insights into this protein's biological functions in dopamine-based neurogenesis.
Keywords
dopaminergic neurogenesis; gene expression profiling; human neural stem cell; NURR-1;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Wallen, A., Zetterstrom, R.H., Solomin, L., Arvidsson, M., Olson, L., and Perlmann, T. (1999). Fate of mesencephalic AHD2-expressing dopamine progenitor cells in NURR1 mutant mice. Exp. Cell Res. 253, 737-746.   DOI
2 Arama, J., Boulay, A.C., Bosc, C., Delphin, C., Loew, D., Rostaing, P., Amigou, E., Ezan, P., Wingertsmann, L., Guillaud, L., et al. (2012). Bmcc1s, a novel brain-isoform of Bmcc1, affects cell morphology by regulating MAP6/STOP functions. PLoS One 7, e35488.   DOI
3 Bernard, A., Lubbers, L.S., Tanis, K.Q., Luo, R., Podtelezhnikov, A.A., Finney, E.M., McWhorter, M.M., Serikawa, K., Lemon, T., Morgan, R., et al. (2012). Transcriptional architecture of the primate neocortex. Neuron 73, 1083-1099.   DOI
4 Bharathan, N.K. and Dickinson, A. (2019). Desmoplakin is required for epidermal integrity and morphogenesis in the Xenopus laevis embryo. Dev. Biol. 450, 115-131.   DOI
5 Blakely, B.D., Bye, C.R., Fernando, C.V., Horne, M.K., Macheda, M.L., Stacker, S.A., Arenas, E., and Parish, C.L. (2011). Wnt5a regulates midbrain dopaminergic axon growth and guidance. PLoS One 6, e18373.   DOI
6 Blunk, A.D., Akbergenova, Y., Cho, R.W., Lee, J., Walldorf, U., Xu, K., Zhong, G., Zhuang, X., and Littleton, J.T. (2014). Postsynaptic actin regulates active zone spacing and glutamate receptor apposition at the Drosophila neuromuscular junction. Mol. Cell. Neurosci. 61, 241-254.   DOI
7 Bohland, J.W., Bokil, H., Pathak, S.D., Lee, C.K., Ng, L., Lau, C., Kuan, C., Hawrylycz, M., and Mitra, P.P. (2010). Clustering of spatial gene expression patterns in the mouse brain and comparison with classical neuroanatomy. Methods 50, 105-112.   DOI
8 Im, J.S., Ki, S.H., Farina, A., Jung, D.S., Hurwitz, J., and Lee, J.K. (2009). Assembly of the Cdc45-Mcm2-7-GINS complex in human cells requires the Ctf4/And-1, RecQL4, and Mcm10 proteins. Proc. Natl. Acad. Sci. U. S. A. 106, 15628-15632.   DOI
9 Inestrosa, N.C. and Arenas, E. (2010). Emerging roles of Wnts in the adult nervous system. Nat. Rev. Neurosci. 11, 77-86.   DOI
10 Irie, K., Tsujimura, K., Nakashima, H., and Nakashima, K. (2016). MicroRNA-214 promotes dendritic development by targeting the schizophrenia-associated gene quaking (Qki). J. Biol. Chem. 291, 13891-13904.   DOI
11 Jacobs, F.M., van der Linden, A.J., Wang, Y., von Oerthel, L., Sul, H.S., Burbach, J.P., and Smidt, M.P. (2009a). Identification of Dlk1, Ptpru and Klhl1 as novel Nurr1 target genes in meso-diencephalic dopamine neurons. Development 136, 2363-2373.   DOI
12 Jacobs, F.M., van Erp, S., van der Linden, A.J., von Oerthel, L., Burbach, J.P., and Smidt, M.P. (2009b). Pitx3 potentiates Nurr1 in dopamine neuron terminal differentiation through release of SMRT-mediated repression. Development 136, 531-540.   DOI
13 Jiangqiao, Z., Tao, Q., Zhongbao, C., Xiaoxiong, M., Long, Z., Jilin, Z., and Tianyu, W. (2019). Anti-silencing function 1B histone chaperone promotes cell proliferation and migration via activation of the AKT pathway in clear cell renal cell carcinoma. Biochem. Biophys. Res. Commun. 511, 165-172.   DOI
14 Kadkhodaei, B., Alvarsson, A., Schintu, N., Ramskold, D., Volakakis, N., Joodmardi, E., Yoshitake, T., Kehr, J., Decressac, M., Bjorklund, A., et al. (2013). Transcription factor Nurr1 maintains fiber integrity and nuclearencoded mitochondrial gene expression in dopamine neurons. Proc. Natl. Acad. Sci. U. S. A. 110, 2360-2365.   DOI
15 Kasper, J.M., McCue, D.L., Milton, A.J., Szwed, A., Sampson, C.M., Huang, M., Carlton, S., Meltzer, H.Y., Cunningham, K.A., and Hommel, J.D. (2016). Gamma-aminobutyric acidergic projections from the dorsal raphe to the nucleus accumbens are regulated by neuromedin U. Biol. Psychiatry 80, 878-887.   DOI
16 Wang, X., Tian, Q.B., Okano, A., Sakagami, H., Moon, I.S., Kondo, H., Endo, S., and Suzuki, T. (2005). BAALC 1-6-8 protein is targeted to postsynaptic lipid rafts by its N-terminal myristoylation and palmitoylation, and interacts with alpha, but not beta, subunit of Ca/calmodulin-dependent protein kinase II. J. Neurochem. 92, 647-659.   DOI
17 Watanabe, S., Endo, S., Oshima, E., Hoshi, T., Higashi, H., Yamada, K., Tohyama, K., Yamashita, T., and Hirabayashi, Y. (2010). Glycosphingolipid synthesis in cerebellar Purkinje neurons: roles in myelin formation and axonal homeostasis. Glia 58, 1197-1207.   DOI
18 Wu, C., Jin, X., Tsueng, G., Afrasiabi, C., and Su, A.I. (2016). BioGPS: building your own mash-up of gene annotations and expression profiles. Nucleic Acids Res. 44, D313-D316.   DOI
19 Xing, G., Zhang, L., Russell, S., and Post, R. (2006). Reduction of dopaminerelated transcription factors Nurr1 and NGFI-B in the prefrontal cortex in schizophrenia and bipolar disorders. Schizophr. Res. 84, 36-56.   DOI
20 Yamada, T., Park, C.S., and Lacorazza, H.D. (2013). Genetic control of quiescence in hematopoietic stem cells. Cell Cycle 12, 2376-2383.   DOI
21 Yamagishi, S., Hampel, F., Hata, K., Del Toro, D., Schwark, M., Kvachnina, E., Bastmeyer, M., Yamashita, T., Tarabykin, V., Klein, R., et al. (2011). FLRT2 and FLRT3 act as repulsive guidance cues for Unc5-positive neurons. EMBO J. 30, 2920-2933.   DOI
22 Kim, S.U. (2004). Human neural stem cells genetically modified for brain repair in neurological disorders. Neuropathology 24, 159-171.   DOI
23 Kim, S.U., Nakagawa, E., Hatori, K., Nagai, A., Lee, M.A., and Bang, J.H. (2002). Production of immortalized human neural crest stem cells. Methods Mol. Biol. 198, 55-65.
24 Kim, T., Kim, K., Lee, S.H., So, H.S., Lee, J., Kim, N., and Choi, Y. (2009). Identification of LRRc17 as a negative regulator of receptor activator of NF-kappaB ligand (RANKL)-induced osteoclast differentiation. J. Biol. Chem. 284, 15308-15316.   DOI
25 Kim, T.E., Seo, J.S., Yang, J.W., Kim, M.W., Kausar, R., Joe, E., Kim, B.Y., and Lee, M.A. (2013). Nurr1 represses tyrosine hydroxylase expression via SIRT1 in human neural stem cells. PLoS One 8, e71469.   DOI
26 La Manno, G., Gyllborg, D., Codeluppi, S., Nishimura, K., Salto, C., Zeisel, A., Borm, L.E., Stott, S.R.W., Toledo, E.M., Villaescusa, J.C., et al. (2016). Molecular diversity of midbrain development in mouse, human, and stem cells. Cell 167, 566-580.e19.   DOI
27 Lee, K.S., Bang, H., Choi, J.K., and Kim, K. (2020). Accelerated evolution of the regulatory sequences of brain development in the human genome. Mol. Cells 43, 331-339.   DOI
28 Kadoyama, K., Matsuura, K., Takano, M., Maekura, K., Inoue, Y., and Matsuyama, S. (2019). Changes in the expression of prefoldin subunit 5 depending on synaptic plasticity in the mouse hippocampus. Neurosci. Lett. 712, 134484.   DOI
29 Yang, S., Edman, L.C., Sanchez-Alcaniz, J.A., Fritz, N., Bonilla, S., Hecht, J., Uhlen, P., Pleasure, S.J., Villaescusa, J.C., Marin, O., et al. (2013). Cxcl12/ Cxcr4 signaling controls the migration and process orientation of A9-A10 dopaminergic neurons. Development 140, 4554-4564.   DOI
30 Zetterstrom, R.H., Solomin, L., Jansson, L., Hoffer, B.J., Olson, L., and Perlmann, T. (1997). Dopamine neuron agenesis in Nurr1-deficient mice. Science 276, 248-250.   DOI
31 Lee, P.H., Yamada, T., Park, C.S., Shen, Y., Puppi, M., and Lacorazza, H.D. (2015). G0S2 modulates homeostatic proliferation of naive CD8(+) T cells and inhibits oxidative phosphorylation in mitochondria. Immunol. Cell Biol. 93, 605-615.   DOI
32 Lein, E.S., Hawrylycz, M.J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., Boe, A.F., Boguski, M.S., Brockway, K.S., Byrnes, E.J., et al. (2007). Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168-176.   DOI
33 Li, L., Wu, X., Yue, H.Y., Zhu, Y.C., and Xu, J. (2016a). Myosin light chain kinase facilitates endocytosis of synaptic vesicles at hippocampal boutons. J. Neurochem. 138, 60-73.   DOI
34 Li, M.J., Liu, Z., Wang, P., Wong, M.P., Nelson, M.R., Kocher, J.P., Yeager, M., Sham, P.C., Chanock, S.J., Xia, Z., et al. (2016b). GWASdb v2: an update database for human genetic variants identified by genome-wide association studies. Nucleic Acids Res. 44, D869-D876.   DOI
35 Li, M.J., Wang, P., Liu, X., Lim, E.L., Wang, Z., Yeager, M., Wong, M.P., Sham, P.C., Chanock, S.J., and Wang, J. (2012). GWASdb: a database for human genetic variants identified by genome-wide association studies. Nucleic Acids Res. 40, D1047-D1054.   DOI
36 Liu, R. and Jin, J.P. (2016). Calponin isoforms CNN1, CNN2 and CNN3: regulators for actin cytoskeleton functions in smooth muscle and nonmuscle cells. Gene 585, 143-153.   DOI
37 Lucchesi, W., Mizuno, K., and Giese, K.P. (2011). Novel insights into CaMKII function and regulation during memory formation. Brain Res. Bull. 85, 2-8.   DOI
38 Marley, A. and von Zastrow, M. (2010). Dysbindin promotes the postendocytic sorting of G protein-coupled receptors to lysosomes. PLoS One 5, e9325.   DOI
39 Myers, E.M., Bartlett, C.W., Machiraju, R., and Bohland, J.W. (2015). An integrative analysis of regional gene expression profiles in the human brain. Methods 73, 54-70.   DOI
40 Ng, L., Bernard, A., Lau, C., Overly, C.C., Dong, H.W., Kuan, C., Pathak, S., Sunkin, S.M., Dang, C., Bohland, J.W., et al. (2009). An anatomic gene expression atlas of the adult mouse brain. Nat. Neurosci. 12, 356-362.   DOI
41 Panman, L., Papathanou, M., Laguna, A., Oosterveen, T., Volakakis, N., Acampora, D., Kurtsdotter, I., Yoshitake, T., Kehr, J., Joodmardi, E., et al. (2014). Sox6 and Otx2 control the specification of substantia nigra and ventral tegmental area dopamine neurons. Cell Rep. 8, 1018-1025.   DOI
42 Pennings, J.L., Kuc, S., Rodenburg, W., Koster, M.P., Schielen, P.C., and de Vries, A. (2011). Integrative data mining to identify novel candidate serum biomarkers for pre-eclampsia screening. Prenat. Diagn. 31, 1153-1159.   DOI
43 Perconti, G., Ferro, A., Amato, F., Rubino, P., Randazzo, D., Wolff, T., Feo, S., and Giallongo, A. (2007). The kelch protein NS1-BP interacts with alphaenolase/ MBP-1 and is involved in c-Myc gene transcriptional control. Biochim. Biophys. Acta 1773, 1774-1785.   DOI
44 Perlmann, T. and Jansson, L. (1995). A novel pathway for vitamin A signaling mediated by RXR heterodimerization with NGFI-B and NURR1. Genes Dev. 9, 769-782.   DOI
45 Perlmann, T. and Wallen-Mackenzie, A. (2004). Nurr1, an orphan nuclear receptor with essential functions in developing dopamine cells. Cell Tissue Res. 318, 45-52.   DOI
46 Polak, B., Risteski, P., Lesjak, S., and Tolic, I.M. (2017). PRC1-labeled microtubule bundles and kinetochore pairs show one-to-one association in metaphase. EMBO Rep. 18, 217-230.   DOI
47 Prakash, N. and Wurst, W. (2006). Genetic networks controlling the development of midbrain dopaminergic neurons. J. Physiol. 575, 403-410.   DOI
48 Zhang, X., Liang, D., Guo, B., Deng, W., Chi, Z.H., Cai, Y., Wang, L., and Ma, J. (2013). Zinc transporter 5 and zinc transporter 7 induced by high glucose protects peritoneal mesothelial cells from undergoing apoptosis. Cell. Signal. 25, 999-1010.   DOI
49 Rami, G., Caillard, O., Medina, I., Pellegrino, C., Fattoum, A., Ben-Ari, Y., and Ferhat, L. (2006). Change in the shape and density of dendritic spines caused by overexpression of acidic calponin in cultured hippocampal neurons. Hippocampus 16, 183-197.   DOI
50 Saha, S., Ramanathan, A., and Rangarajan, P.N. (2006). Regulation of Ca2+/ calmodulin kinase II inhibitor alpha (CaMKIINalpha) in virus-infected mouse brain. Biochem. Biophys. Res. Commun. 350, 444-449.   DOI
51 Saucedo-Cardenas, O., Quintana-Hau, J.D., Le, W.D., Smidt, M.P., Cox, J.J., De Mayo, F., Burbach, J.P., and Conneely, O.M. (1998). Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc. Natl. Acad. Sci. U. S. A. 95, 4013-4018.   DOI
52 Seiradake, E., del Toro, D., Nagel, D., Cop, F., Hartl, R., Ruff, T., Seyit- Bremer, G., Harlos, K., Border, E.C., Acker-Palmer, A., et al. (2014). FLRT structure: balancing repulsion and cell adhesion in cortical and vascular development. Neuron 84, 370-385.   DOI
53 Sharma, V.K., Singh, A., Srivastava, S.K., Kumar, V., Gardi, N.L., Nalwa, A., Dinda, A.K., Chattopadhyay, P., and Yadav, S. (2016). Increased expression of platelet-derived growth factor associated protein-1 is associated with PDGF-B mediated glioma progression. Int. J. Biochem. Cell Biol. 78, 194-205.   DOI
54 Shastry, B.S. (2001). Parkinson disease: etiology, pathogenesis and future of gene therapy. Neurosci. Res. 41, 5-12.   DOI
55 Sia, G.M., Clem, R.L., and Huganir, R.L. (2013). The human languageassociated gene SRPX2 regulates synapse formation and vocalization in mice. Science 342, 987-991.   DOI
56 Smits, S.M., Burbach, J.P., and Smidt, M.P. (2006). Developmental origin and fate of meso-diencephalic dopamine neurons. Prog. Neurobiol. 78, 1-16.   DOI
57 Buervenich, S., Carmine, A., Arvidsson, M., Xiang, F., Zhang, Z., Sydow, O., Jonsson, E.G., Sedvall, G.C., Leonard, S., Ross, R.G., et al. (2000). NURR1 mutations in cases of schizophrenia and manic-depressive disorder. Am. J. Med. Genet. 96, 808-813.   DOI
58 Castillo, S.O., Xiao, Q., Kostrouch, Z., Dozin, B., and Nikodem, V.M. (1998). A divergent role of COOH-terminal domains in Nurr1 and Nur77 transactivation. Gene Expr. 7, 1-12.
59 Cui, H., Wang, Q., Lei, Z., Feng, M., Zhao, Z., Wang, Y., and Wei, G. (2019). DTL promotes cancer progression by PDCD4 ubiquitin-dependent degradation. J. Exp. Clin. Cancer Res. 38, 350.   DOI
60 D'Arco, F., Alves, C.A., Raybaud, C., Chong, W., Ishak, G.E., Ramji, S., Grima, M., Barkovich, A.J., and Ganesan, V. (2018). Expanding the distinctive neuroimaging phenotype of ACTA2 mutations. AJNR Am. J. Neuroradiol. 39, 2126-2131.   DOI
61 Deng, Q., Andersson, E., Hedlund, E., Alekseenko, Z., Coppola, E., Panman, L., Millonig, J.H., Brunet, J.F., Ericson, J., and Perlmann, T. (2011). Specific and integrated roles of Lmx1a, Lmx1b and Phox2a in ventral midbrain development. Development 138, 3399-3408.   DOI
62 Di Salvio, M., Di Giovannantonio, L.G., Acampora, D., Prosperi, R., Omodei, D., Prakash, N., Wurst, W., and Simeone, A. (2010). Otx2 controls neuron subtype identity in ventral tegmental area and antagonizes vulnerability to MPTP. Nat. Neurosci. 13, 1481-1488.   DOI
63 Dobolyi, A. and Palkovits, M. (2008). Expression of latent transforming growth factor beta binding proteins in the rat brain. J. Comp. Neurol. 507, 1393-1408.   DOI
64 Elsworth, J.D. and Roth, R.H. (1997). Dopamine synthesis, uptake, metabolism, and receptors: relevance to gene therapy of Parkinson's disease. Exp. Neurol. 144, 4-9.   DOI
65 Frazer, K.A., Pachter, L., Poliakov, A., Rubin, E.M., and Dubchak, I. (2004). VISTA: computational tools for comparative genomics. Nucleic Acids Res. 32, W273-W279.   DOI
66 Fu, X.L., Zhou, X.X., Shi, Z., and Zheng, W.C. (2019). Adult-onset mitochondrial encephalopathy in association with the MT-ND3 T10158C mutation exhibits unique characteristics: a case report. World J. Clin. Cases 7, 1066-1072.   DOI
67 Han, K., Chen, H., Gennarino, V.A., Richman, R., Lu, H.C., and Zoghbi, H.Y. (2015). Fragile X-like behaviors and abnormal cortical dendritic spines in cytoplasmic FMR1-interacting protein 2-mutant mice. Hum. Mol. Genet. 24, 1813-1823.   DOI
68 Hawrylycz, M.J., Lein, E.S., Guillozet-Bongaarts, A.L., Shen, E.H., Ng, L., Miller, J.A., van de Lagemaat, L.N., Smith, K.A., Ebbert, A., Riley, Z.L., et al. (2012). An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391-399.   DOI
69 Huttlin, E.L., Ting, L., Bruckner, R.J., Gebreab, F., Gygi, M.P., Szpyt, J., Tam, S., Zarraga, G., Colby, G., Baltier, K., et al. (2015). The BioPlex network: a systematic exploration of the human interactome. Cell 162, 425-440.   DOI
70 Soteros, B.M., Cong, Q., Palmer, C.R., and Sia, G.M. (2018). Sociability and synapse subtype-specific defects in mice lacking SRPX2, a languageassociated gene. PLoS One 13, e0199399.   DOI
71 Sousa, K.M., Mira, H., Hall, A.C., Jansson-Sjostrand, L., Kusakabe, M., and Arenas, E. (2007). Microarray analyses support a role for Nurr1 in resistance to oxidative stress and neuronal differentiation in neural stem cells. Stem Cells 25, 511-519.   DOI
72 Tan, M., Cha, C., Ye, Y., Zhang, J., Li, S., Wu, F., Gong, S., and Guo, G. (2015). CRMP4 and CRMP2 interact to coordinate cytoskeleton dynamics, regulating growth cone development and axon elongation. Neural Plast. 2015, 947423.   DOI
73 Theofilopoulos, S., Wang, Y., Kitambi, S.S., Sacchetti, P., Sousa, K.M., Bodin, K., Kirk, J., Salto, C., Gustafsson, M., Toledo, E.M., et al. (2013). Brain endogenous liver X receptor ligands selectively promote midbrain neurogenesis. Nat. Chem. Biol. 9, 126-133.   DOI
74 Van den Heuvel, D.M. and Pasterkamp, R.J. (2008). Getting connected in the dopamine system. Prog. Neurobiol. 85, 75-93.   DOI
75 Vuillermot, S., Joodmardi, E., Perlmann, T., Ove Ogren, S., Feldon, J., and Meyer, U. (2011). Schizophrenia-relevant behaviors in a genetic mouse model of constitutive Nurr1 deficiency. Genes Brain Behav. 10, 589-603.   DOI
76 Wallen, A. and Perlmann, T. (2003). Transcriptional control of dopamine neuron development. Ann. N. Y. Acad. Sci. 991, 48-60.   DOI
77 Andersson, E.R., Salto, C., Villaescusa, J.C., Cajanek, L., Yang, S., Bryjova, L., Nagy, I.I., Vainio, S.J., Ramirez, C., Bryja, V., et al. (2013). Wnt5a cooperates with canonical Wnts to generate midbrain dopaminergic neurons in vivo and in stem cells. Proc. Natl. Acad. Sci. U. S. A. 110, E602-E610.   DOI