Browse > Article
http://dx.doi.org/10.14348/molcells.2019.0291

The Roles of RUNX Family Proteins in Development of Immune Cells  

Seo, Wooseok (Department of Immunology, Nagoya University Graduate School of Medicine)
Taniuchi, Ichiro (Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences)
Abstract
The Runt-related transcription factors (RUNX) transcription factors have been known for their critical roles in numerous developmental processes and diseases such as autoimmune disorders and cancer. Especially, RUNX proteins are best known for their roles in hematopoiesis, particularly during the development of T cells. As scientists discover more types of new immune cells, the functional diversity of RUNX proteins also has been increased over time. Furthermore, recent research has revealed complicated transcriptional networks involving RUNX proteins by the current technical advances. Databases established by next generation sequencing data analysis has identified ever increasing numbers of potential targets for RUNX proteins and other transcription factors. Here, we summarize diverse functions of RUNX proteins mainly on lymphoid lineage cells by incorporating recent discoveries.
Keywords
development; immune cells; Runx family; transcription factors;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wang, Y., Godec, J., Ben-Aissa, K., Cui, K., Zhao, K., Pucsek, A.B., Lee, Y.K., Weaver, C.T., Yagi, R., and Lazarevic, V. (2014). The transcription factors T-bet and Runx are required for the ontogeny of pathogenic interferongamma-producing T helper 17 cells. Immunity 40, 355-366.   DOI
2 Watanabe, K., Sugai, M., Nambu, Y., Osato, M., Hayashi, T., Kawaguchi, M., Komori, T., Ito, Y., and Shimizu, A. (2010). Requirement for Runx proteins in IgA class switching acting downstream of TGF-beta 1 and retinoic acid signaling. J. Immunol. 184, 2785-2792.   DOI
3 Woolf, E., Brenner, O., Goldenberg, D., Levanon, D., and Groner, Y. (2007). Runx3 regulates dendritic epidermal T cell development. Dev. Biol. 303, 703-714.   DOI
4 Xing, S., Shao, P., Li, F., Zhao, X., Seo, W., Wheat, J.C., Ramasamy, S., Wang, J., Li, X., Peng, W., et al. (2018). Tle corepressors are differentially partitioned to instruct CD8(+) T cell lineage choice and identity. J. Exp. Med. 215, 2211-2226.   DOI
5 Bruno, L., Mazzarella, L., Hoogenkamp, M., Hertweck, A., Cobb, B.S., Sauer, S., Hadjur, S., Leleu, M., Naoe, Y., Telfer, J.C., et al. (2009). Runx proteins regulate Foxp3 expression. J. Exp. Med. 206, 2329-2337.   DOI
6 Park, J.H., Adoro, S., Guinter, T., Erman, B., Alag, A.S., Catalfamo, M., Kimura, M.Y., Cui, Y., Lucas, P.J., Gress, R.E., et al. (2010). Signaling by intrathymic cytokines, not T cell antigen receptors, specifies CD8 lineage choice and promotes the differentiation of cytotoxic-lineage T cells. Nat. Immunol. 11, 257-264.   DOI
7 Cooper, M.A., Elliott, J.M., Keyel, P.A., Yang, L., Carrero, J.A., and Yokoyama, W.M. (2009). Cytokine-induced memory-like natural killer cells. Proc. Natl. Acad. Sci. U. S. A. 106, 1915-1919.   DOI
8 Cruz-Guilloty, F., Pipkin, M.E., Djuretic, I.M., Levanon, D., Lotem, J., Lichtenheld, M.G., Groner, Y., and Rao, A. (2009). Runx3 and T-box proteins cooperate to establish the transcriptional program of effector CTLs. J. Exp. Med. 206, 51-59.   DOI
9 Djuretic, I.M., Levanon, D., Negreanu, V., Groner, Y., Rao, A., and Ansel, K.M. (2007). Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nat. Immunol. 8, 145-153.   DOI
10 Pardali, E., Xie, X.Q., Tsapogas, P., Itoh, S., Arvanitidis, K., Heldin, C.H., ten Dijke, P., Grundstrom, T., and Sideras, P. (2000). Smad and AML proteins synergistically confer transforming growth factor beta1 responsiveness to human germ-line IgA genes. J. Biol. Chem. 275, 3552-3560.   DOI
11 Pham, D., Vincentz, J.W., Firulli, A.B., and Kaplan, M.H. (2012). Twist1 regulates Ifng expression in Th1 cells by interfering with Runx3 function. J. Immunol. 189, 832-840.   DOI
12 Rapp, M., Lau, C.M., Adams, N.M., Weizman, O.E., O'Sullivan, T.E., Geary, C.D., and Sun, J.C. (2017). Core-binding factor ${\beta}$ and Runx transcription factors promote adaptive natural killer cell responses. Sci. Immunol. 2, eaan3796.   DOI
13 Reis, B.S., Rogoz, A., Costa-Pinto, F.A., Taniuchi, I., and Mucida, D. (2013). Mutual expression of the transcription factors Runx3 and ThPOK regulates intestinal CD4(+) T cell immunity. Nat. Immunol. 14, 271-280.   DOI
14 Rudra, D., Egawa, T., Chong, M.M., Treuting, P., Littman, D.R., and Rudensky, A.Y. (2009). Runx-CBFbeta complexes control expression of the transcription factor Foxp3 in regulatory T cells. Nat. Immunol. 10, 1170-1177.   DOI
15 Sakaguchi, S., Hainberger, D., Tizian, C., Tanaka, H., Okuda, T., Taniuchi, I., and Ellmeier, W. (2015). MAZR and Runx factors synergistically repress ThPOK during CD8+ T cell lineage development. J. Immunol. 195, 2879-2887.   DOI
16 Zheng, Y., Josefowicz, S., Chaudhry, A., Peng, X.P., Forbush, K., and Rudensky, A.Y. (2010). Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463, 808-812.   DOI
17 Zeidan, N., Damen, H., Roy, D.C., and Dave, V.P. (2019). Critical role for TCR signal strength and MHC specificity in ThPOK-Induced CD4 helper lineage choice. J. Immunol. 202, 3211-3225.   DOI
18 Zhang, F., Meng, G., and Strober, W. (2008). Interactions among the transcription factors Runx1, RORgammat and Foxp3 regulate the differentiation of interleukin 17-producing T cells. Nat. Immunol. 9, 1297-1306.   DOI
19 Zhang, Y. and Derynck, R. (2000). Transcriptional regulation of the transforming growth factor-beta-inducible mouse germ line Ig alpha constant region gene by functional cooperation of Smad, CREB, and AML family members. J. Biol. Chem. 275, 16979-16985.   DOI
20 Zhao, X., Jankovic, V., Gural, A., Huang, G., Pardanani, A., Menendez, S., Zhang, J., Dunne, R., Xiao, A., Erdjument-Bromage, H., et al. (2008). Methylation of RUNX1 by PRMT1 abrogates SIN3A binding and potentiates its transcriptional activity. Genes Dev. 22, 640-653.   DOI
21 Ha-Lee, Y.M., Lee, Y., Kim, Y.K., and Sohn, J. (2000). Cross-linking of CD4 induces cytoskeletal association of CD4 and p56lck. Exp. Mol. Med. 32, 18-22.   DOI
22 Egawa, T., Eberl, G., Taniuchi, I., Benlagha, K., Geissmann, F., Hennighausen, L., Bendelac, A., and Littman, D.R. (2005). Genetic evidence supporting selection of the Valpha14i NKT cell lineage from double-positive thymocyte precursors. Immunity 22, 705-716.   DOI
23 Egawa, T., Tillman, R.E., Naoe, Y., Taniuchi, I., and Littman, D.R. (2007). The role of the Runx transcription factors in thymocyte differentiation and in homeostasis of naive T cells. J. Exp. Med. 204, 1945-1957.   DOI
24 Growney, J.D., Shigematsu, H., Li, Z., Lee, B.H., Adelsperger, J., Rowan, R., Curley, D.P., Kutok, J.L., Akashi, K., Williams, I.R., et al. (2005). Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood 106, 494-504.
25 Guo, H. and Friedman, A.D. (2011). Phosphorylation of RUNX1 by cyclindependent kinase reduces direct interaction with HDAC1 and HDAC3. J. Biol. Chem. 286, 208-215.   DOI
26 Guo, Y., Maillard, I., Chakraborti, S., Rothenberg, E.V., and Speck, N.A. (2008). Core binding factors are necessary for natural killer cell development and cooperate with Notch signaling during T-cell specification. Blood 112, 480-492.
27 Hanai, J., Chen, L.F., Kanno, T., Ohtani-Fujita, N., Kim, W.Y., Guo, W.H., Imamura, T., Ishidou, Y., Fukuchi, M., Shi, M.J., et al. (1999). Interaction and functional cooperation of PEBP2/CBF with Smads. Synergistic induction of the immunoglobulin germline Calpha promoter. J. Biol. Chem. 274, 31577-31582.   DOI
28 Seo, W., Ikawa, T., Kawamoto, H., and Taniuchi, I. (2012). Runx1-Cbfbeta facilitates early B lymphocyte development by regulating expression of Ebf1. J. Exp. Med. 209, 1255-1262.   DOI
29 Sakaguchi, S., Hombauer, M., Bilic, I., Naoe, Y., Schebesta, A., Taniuchi, I., and Ellmeier, W. (2010). The zinc-finger protein MAZR is part of the transcription factor network that controls the CD4 versus CD8 lineage fate of double-positive thymocytes. Nat. Immunol. 11, 442-448.   DOI
30 Sellars, M., Huh, J.R., Day, K., Issuree, P.D., Galan, C., Gobeil, S., Absher, D., Green, M.R., and Littman, D.R. (2015). Regulation of DNA methylation dictates Cd4 expression during the development of helper and cytotoxic T cell lineages. Nat. Immunol. 16, 746-754.   DOI
31 Seo, W., Muroi, S., Akiyama, K., and Taniuchi, I. (2017). Distinct requirement of Runx complexes for TCRbeta enhancer activation at distinct developmental stages. Sci. Rep. 7, 41351.   DOI
32 Setoguchi, R., Tachibana, M., Naoe, Y., Muroi, S., Akiyama, K., Tezuka, C., Okuda, T., and Taniuchi, I. (2008). Repression of the transcription factor Th-POK by Runx complexes in cytotoxic T cell development. Science 319, 822-825.   DOI
33 Shi, M.J. and Stavnezer, J. (1998). CBF alpha3 (AML2) is induced by TGFbeta1 to bind and activate the mouse germline Ig alpha promoter. J. Immunol. 161, 6751-6760.
34 Stavnezer, J. and Kang, J. (2009). The surprising discovery that TGF beta specifically induces the IgA class switch. J. Immunol. 182, 5-7.   DOI
35 Sun, G., Liu, X., Mercado, P., Jenkinson, S.R., Kypriotou, M., Feigenbaum, L., Galera, P., and Bosselut, R. (2005). The zinc finger protein cKrox directs CD4 lineage differentiation during intrathymic T cell positive selection. Nat. Immunol. 6, 373-381.   DOI
36 Kamimura, Y. and Lanier, L.L. (2015). Homeostatic control of memory cell progenitors in the natural killer cell lineage. Cell Rep. 10, 280-291.   DOI
37 Ichikawa, M., Asai, T., Saito, T., Seo, S., Yamazaki, I., Yamagata, T., Mitani, K., Chiba, S., Ogawa, S., Kurokawa, M., et al. (2004). AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat. Med. 10, 299-304.   DOI
38 Ito, Y., Bae, S.C., and Chuang, L.S. (2015). The RUNX family: developmental regulators in cancer. Nat. Rev. Cancer 15, 81-95.   DOI
39 Jin, Y.H., Jeon, E.J., Li, Q.L., Lee, Y.H., Choi, J.K., Kim, W.J., Lee, K.Y., and Bae, S.C. (2004). Transforming growth factor-beta stimulates p300-dependent RUNX3 acetylation, which inhibits ubiquitination-mediated degradation. J. Biol. Chem. 279, 29409-29417.   DOI
40 Kim, J.H., Jang, J.W., Lee, Y.S., Lee, J.W., Chi, X.Z., Li, Y.H., Kim, M.K., Kim, D.M., Choi, B.S., Kim, J., et al. (2014). RUNX family members are covalently modified and regulated by PIAS1-mediated sumoylation. Oncogenesis 3, e101.   DOI
41 Kim, W.Y., Sieweke, M., Ogawa, E., Wee, H.J., Englmeier, U., Graf, T., and Ito, Y. (1999). Mutual activation of Ets-1 and AML1 DNA binding by direct interaction of their autoinhibitory domains. EMBO J. 18, 1609-1620.   DOI
42 Kitagawa, Y., Ohkura, N., Kidani, Y., Vandenbon, A., Hirota, K., Kawakami, R., Yasuda, K., Motooka, D., Nakamura, S., Kondo, M., et al. (2017). Guidance of regulatory T cell development by Satb1-dependent super-enhancer establishment. Nat. Immunol. 18, 173-183.   DOI
43 Kitoh, A., Ono, M., Naoe, Y., Ohkura, N., Yamaguchi, T., Yaguchi, H., Kitabayashi, I., Tsukada, T., Nomura, T., Miyachi, Y., et al. (2009). Indispensable role of the Runx1-Cbfbeta transcription complex for in vivosuppressive function of FoxP3+ regulatory T cells. Immunity 31, 609-620.   DOI
44 Tenno, M., Shiroguchi, K., Muroi, S., Kawakami, E., Koseki, K., Kryukov, K., Imanishi, T., Ginhoux, F., and Taniuchi, I. (2017). Cbfbeta2 deficiency preserves Langerhans cell precursors by lack of selective TGFbeta receptor signaling. J. Exp. Med. 214, 2933-2946.   DOI
45 Sun, J.C., Madera, S., Bezman, N.A., Beilke, J.N., Kaplan, M.H., and Lanier, L.L. (2012). Proinflammatory cytokine signaling required for the generation of natural killer cell memory. J. Exp. Med. 209, 947-954.   DOI
46 Taniuchi, I., Osato, M., Egawa, T., Sunshine, M.J., Bae, S.C., Komori, T., Ito, Y., and Littman, D.R. (2002). Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell 111, 621-633.   DOI
47 Tenno, M., Kojo, S., Lawir, D.F., Hess, I., Shiroguchi, K., Ebihara, T., Endo, T.A., Muroi, S., Satoh, R., Kawamoto, H., et al. (2018). Cbfbeta2 controls differentiation of and confers homing capacity to prethymic progenitors. J. Exp. Med. 215, 595-610.   DOI
48 Vivier, E., Raulet, D.H., Moretta, A., Caligiuri, M.A., Zitvogel, L., Lanier, L.L., Yokoyama, W.M., and Ugolini, S. (2011). Innate or adaptive immunity? The example of natural killer cells. Science 331, 44-49.   DOI
49 Thapa, P., Manso, B., Chung, J.Y., Romera Arocha, S., Xue, H.H., Angelo, D.B.S., and Shapiro, V.S. (2017). The differentiation of ROR-gammat expressing iNKT17 cells is orchestrated by Runx1. Sci. Rep. 7, 7018.   DOI
50 Tsagaratou, A., Aijo, T., Lio, C.W., Yue, X., Huang, Y., Jacobsen, S.E., Lahdesmaki, H., and Rao, A. (2014). Dissecting the dynamic changes of 5-hydroxymethylcytosine in T-cell development and differentiation. Proc. Natl. Acad. Sci. U. S. A. 111, E3306-E3315.   DOI
51 Mandel, E.M. and Grosschedl, R. (2010). Transcription control of early B cell differentiation. Curr. Opin. Immunol. 22, 161-167.   DOI
52 Komine, O., Hayashi, K., Natsume, W., Watanabe, T., Seki, Y., Seki, N., Yagi, R., Sukzuki, W., Tamauchi, H., Hozumi, K., et al. (2003). The Runx1 transcription factor inhibits the differentiation of naive CD4+ T cells into the Th2 lineage by repressing GATA3 expression. J. Exp. Med. 198, 51-61.   DOI
53 Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., Shimizu, Y., Bronson, R.T., Gao, Y.H., Inada, M., et al. (1997). Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89, 755-764.   DOI
54 Levanon, D., Bettoun, D., Harris-Cerruti, C., Woolf, E., Negreanu, V., Eilam, R., Bernstein, Y., Goldenberg, D., Xiao, C., Fliegauf, M., et al. (2002). The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J. 21, 3454-3463.   DOI
55 Levanon, D., Negreanu, V., Lotem, J., Bone, K.R., Brenner, O., Leshkowitz, D., and Groner, Y. (2014). Transcription factor Runx3 regulates interleukin-15-dependent natural killer cell activation. Mol. Cell. Biol. 34, 1158-1169.   DOI
56 Maier, H., Ostraat, R., Gao, H., Fields, S., Shinton, S.A., Medina, K.L., Ikawa, T., Murre, C., Singh, H., Hardy, R.R., et al. (2004). Early B cell factor cooperates with Runx1 and mediates epigenetic changes associated with mb-1 transcription. Nat. Immunol. 5, 1069-1077.   DOI
57 Milner, J.J., Toma, C., Yu, B., Zhang, K., Omilusik, K., Phan, A.T., Wang, D., Getzler, A.J., Nguyen, T., Crotty, S., et al. (2017). Runx3 programs CD8(+) T cell residency in non-lymphoid tissues and tumours. Nature 552, 253-257.   DOI
58 Nieke, S., Yasmin, N., Kakugawa, K., Yokomizo, T., Muroi, S., and Taniuchi, I. (2017). Unique N-terminal sequences in two Runx1 isoforms are dispensable for Runx1 function. BMC Dev. Biol. 17, 14.   DOI
59 Mucida, D., Husain, M.M., Muroi, S., van Wijk, F., Shinnakasu, R., Naoe, Y., Reis, B.S., Huang, Y., Lambolez, F., Docherty, M., et al. (2013). Transcriptional reprogramming of mature CD4(+) helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes. Nat. Immunol. 14, 281-289.   DOI
60 Mundlos, S., Otto, F., Mundlos, C., Mulliken, J.B., Aylsworth, A.S., Albright, S., Lindhout, D., Cole, W.G., Henn, W., Knoll, J.H., et al. (1997). Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89, 773-779.   DOI
61 Ono, M., Yaguchi, H., Ohkura, N., Kitabayashi, I., Nagamura, Y., Nomura, T., Miyachi, Y., Tsukada, T., and Sakaguchi, S. (2007). Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446, 685-689.   DOI
62 O’Sullivan, T.E., Sun, J.C., and Lanier, L.L. (2015). Natural killer cell memory. Immunity 43, 634-645.   DOI
63 Ohno, S., Sato, T., Kohu, K., Takeda, K., Okumura, K., Satake, M., and Habu, S. (2008). Runx proteins are involved in regulation of CD122, Ly49 family and IFN-gamma expression during NK cell differentiation. Int. Immunol. 20, 71-79.   DOI
64 Okuda, T., van Deursen, J., Hiebert, S.W., Grosveld, G., and Downing, J.R. (1996). AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84, 321-330.   DOI
65 Otto, F., Thornell, A.P., Crompton, T., Denzel, A., Gilmour, K.C., Rosewell, I.R., Stamp, G.W., Beddington, R.S., Mundlos, S., Olsen, B.R., et al. (1997). Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89, 765-771.   DOI
66 Wang, Q., Stacy, T., Miller, J.D., Lewis, A.F., Gu, T.L., Huang, X., Bushweller, J.H., Bories, J.C., Alt, F.W., Ryan, G., et al. (1996b). The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo. Cell 87, 697-708.   DOI
67 Wang, D., Diao, H., Getzler, A.J., Rogal, W., Frederick, M.A., Milner, J., Yu, B., Crotty, S., Goldrath, A.W., and Pipkin, M.E. (2018). The transcription factor Runx3 establishes chromatin accessibility of cis-regulatory landscapes that drive memory cytotoxic t lymphocyte formation. Immunity 48, 659-674.e6.   DOI
68 Wang, Q., Stacy, T., Binder, M., Marin-Padilla, M., Sharpe, A.H., and Speck, N.A. (1996a). Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc. Natl. Acad. Sci. U. S. A. 93, 3444-3449.   DOI