Browse > Article
http://dx.doi.org/10.14348/molcells.2019.0239

The Tumor Suppressor, p53, Negatively Regulates Non-Canonical NF-κB Signaling through miRNA-Induced Silencing of NF-κB-Inducing Kinase  

Jang, Hanbit (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
Park, Seulki (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Kim, Jaehoon (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
Kim, Jong Hwan (Personalized Genomic Medicine Research Center, KRIBB)
Kim, Seon-Young (Personalized Genomic Medicine Research Center, KRIBB)
Cho, Sayeon (College of Pharmacy, Chung-Ang University)
Park, Sung Goo (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Park, Byoung Chul (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Kim, Sunhong (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Kim, Jeong-Hoon (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Abstract
NF-κB signaling through both canonical and non-canonical pathways plays a central role in immune responses and inflammation. NF-κB-inducing kinase (NIK) stabilization is a key step in activation of the non-canonical pathway and its dysregulation implicated in various hematologic malignancies. The tumor suppressor, p53, is an established cellular gatekeeper of proliferation. Abnormalities of the TP53 gene have been detected in more than half of all human cancers. While the non-canonical NF-κB and p53 pathways have been explored for several decades, no studies to date have documented potential cross-talk between these two cancer-related mechanisms. Here, we demonstrate that p53 negatively regulates NIK in an miRNA-dependent manner. Overexpression of p53 decreased the levels of NIK, leading to inhibition of the non-canonical NF-κB pathway. Conversely, its knockdown led to increased levels of NIK, IKKα phosphorylation, and p100 processing. Additionally, miR-34b induced by nutlin-3 directly targeted the coding sequences (CDS) of NIK. Treatment with anti-miR-34b-5p augmented NIK levels and subsequent non-canonical NF-κB signaling. Our collective findings support a novel cross-talk mechanism between non-canonical NF-κB and p53.
Keywords
cancer; microRNA; $NF-{\kappa}B$; $NF-{\kappa}B$-inducing kinase; p53; tumor suppressor gene;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Balaji, S., Ahmed, M., Lorence, E., Yan, F., Nomie, K., and Wang, M. (2018). $NF-{\kappa}B$ signaling and its relevance to the treatment of mantle cell lymphoma. J. Hematol. Oncol. 11, 83.   DOI
2 Beg, M.S., Brenner, A.J., Sachdev, J., Borad, M., Kang, Y.K., Stoudemire, J., Smith, S., Bader, A.G., Kim, S., and Hong, D.S. (2017). Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest. New Drugs 35, 180-188.   DOI
3 Benitez, J.A., Ma, J., D'Antonio, M., Boyer, A., Camargo, M.F., Zanca, C., Kelly, S., Khodadadi-Jamayran, A., Jameson, N.M., Andersen, M., et al. (2017). PTEN regulates glioblastoma oncogenesis through chromatin-associated complexes of DAXX and histone H3.3. Nat. Commun. 8, 15223.   DOI
4 Chi, S.W., Zang, J.B., Mele, A., and Darnell, R.B. (2009). Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460, 479-486.   DOI
5 Choi, J.S., Park, B.C., Chi, S.W., Bae, K.H., Kim, S., Cho, S., Son, W.C., Myung, P.K., Kim, J.H., and Park, S.G. (2014). HAX1 regulates E3 ubiquitin ligase activity of cIAPs by promoting their dimerization. Oncotarget 5, 10084-10099.   DOI
6 Dice, J.F. (2007). Chaperone-mediated autophagy. Autophagy 3, 295-299.   DOI
7 Forman, J.J., Legesse-Miller, A., and Coller, H.A. (2008). A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc. Natl. Acad. Sci. U. S. A. 105, 14879-14884.   DOI
8 Ha, M. and Kim, V.N. (2014). Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15, 509-524.   DOI
9 Huang, W.C., Ju, T.K., Hung, M.C., and Chen, C.C. (2007). Phosphorylation of CBP by IKKalpha promotes cell growth by switching the binding preference of CBP from p53 to NF-kappaB. Mol. Cell 26, 75-87.   DOI
10 Hermeking, H. (2012). MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat. Rev. Cancer 12, 613-626.   DOI
11 Keats, J.J., Fonseca, R., Chesi, M., Schop, R., Baker, A., Chng, W.J., Van Wier, S., Tiedemann, R., Shi, C.X., Sebag, M., et al. (2007). Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 12, 131-144.   DOI
12 Jin, Y., Chen, Z., Liu, X., and Zhou, X. (2013). Evaluating the microRNA targeting sites by luciferase reporter gene assay. Methods Mol. Biol. 936, 117-127.   DOI
13 Kastenhuber, E.R. and Lowe, S.W. (2017). Putting p53 in context. Cell 170, 1062-1078.   DOI
14 Kawauchi, K., Araki, K., Tobiume, K., and Tanaka, N. (2009). Loss of p53 enhances catalytic activity of IKKbeta through O-linked beta-N-acetyl glucosamine modification. Proc. Natl. Acad. Sci. U. S. A. 106, 3431-3436.   DOI
15 Kendellen, M.F., Bradford, J.W., Lawrence, C.L., Clark, K.S., and Baldwin, A.S. (2014). Canonical and non-canonical $NF-{\kappa}B$ signaling promotes breast cancer tumor-initiating cells. Oncogene 33, 1297-1305.   DOI
16 Kim, J.S., Kim, E.J., Lee, S., Tan, X., Liu, X., Park, S., Kang, K., Yoon, J.S., Ko, Y.H., Kurie, J.M., et al. (2019). MiR-34a and miR-34b/c have distinct effects on the suppression of lung adenocarcinomas. Exp. Mol. Med. 51, 9.   DOI
17 Kim, N.H., Kim, H.S., Kim, N.G., Lee, I., Choi, H.S., Li, X.Y., Kang, S.E., Cha, S.Y., Ryu, J.K., Na, J.M., et al. (2011). p53 and microRNA-34 are suppressors of canonical Wnt signaling. Sci. Signal. 4, ra71.   DOI
18 Hermeking, H. (2010). The miR-34 family in cancer and apoptosis. Cell Death Differ. 17, 193-199.   DOI
19 Vogelstein, B., Lane, D., and Levine, A.J. (2000). Surfing the p53 network. Nature 408, 307-310.   DOI
20 Vazquez-Santillan, K., Melendez-Zajgla, J., Jimenez-Hernandez, L.E., Gaytan-Cervantes, J., Munoz-Galindo, L., Pina-Sanchez, P., Martinez-Ruiz, G., Torres, J., Garcia-Lopez, P., Gonzalez-Torres, C., et al. (2016). NF-kappaΒ-inducing kinase regulates stem cell phenotype in breast cancer. Sci. Rep. 6, 37340.   DOI
21 Walker, E.J., Zhang, C., Castelo-Branco, P., Hawkins, C., Wilson, W., Zhukova, N., Alon, N., Novokmet, A., Baskin, B., Ray, P., et al. (2012). Monoallelic expression determines oncogenic progression and outcome in benign and malignant brain tumors. Cancer Res. 72, 636-644.   DOI
22 O'Keefe, K., Li, H., and Zhang, Y. (2003). Nucleocytoplasmic shuttling of p53 is essential for MDM2-mediated cytoplasmic degradation but not ubiquitination. Mol. Cell Biol. 23, 6396-6405.   DOI
23 Lin, J., Chen, J., Elenbaas, B., and Levine, A.J. (1994). Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev. 8, 1235-1246.   DOI
24 Lin, X., Mu, Y., Cunningham, E.T., Jr., Marcu, K.B., Geleziunas, R., and Greene, W.C. (1998). Molecular determinants of NF-kappaB-inducing kinase action. Mol. Cell Biol. 18, 5899-5907.   DOI
25 Mayo, M.W., Madrid, L.V., Westerheide, S.D., Jones, D.R., Yuan, X.J., Baldwin, A.S., Jr., and Whang, Y.E. (2002). PTEN blocks tumor necrosis factor-induced NF-kappa B-dependent transcription by inhibiting the transactivation potential of the p65 subunit. J. Biol. Chem. 277, 11116-11125.   DOI
26 Onder, T.T., Gupta, P.B., Mani, S.A., Yang, J., Lander, E.S., and Weinberg, R.A. (2008). Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 68, 3645-3654.   DOI
27 Otto, C., Giefing, M., Massow, A., Vater, I., Gesk, S., Schlesner, M., Richter, J., Klapper, W., Hansmann, M.L., Siebert, R., et al. (2012). Genetic lesions of the TRAF3 and MAP3K14 genes in classical Hodgkin lymphoma. Br. J. Haematol. 157, 702-708.   DOI
28 Pigazzi, M., Manara, E., Baron, E., and Basso, G. (2009). miR-34b targets cyclic AMP-responsive element binding protein in acute myeloid leukemia. Cancer Res. 69, 2471-2478.   DOI
29 Yamagishi, M., Nakano, K., Miyake, A., Yamochi, T., Kagami, Y., Tsutsumi, A., Matsuda, Y., Sato-Otsubo, A., Muto, S., Utsunomiya, A., et al. (2012). Polycomb-mediated loss of miR-31 activates NIK-dependent $NF-{\kappa}B$ pathway in adult T cell leukemia and other cancers. Cancer Cell 21, 121-135.   DOI
30 Yamada, T., Mitani, T., Yorita, K., Uchida, D., Matsushima, A., Iwamasa, K., Fujita, S., and Matsumoto, M. (2000). Abnormal immune function of hemopoietic cells from alymphoplasia (aly) mice, a natural strain with mutant NF-kappa B-inducing kinase. J. Immunol. 165, 804-812.   DOI
31 Yamaguchi, N., Ito, T., Azuma, S., Ito, E., Honma, R., Yanagisawa, Y., Nishikawa, A., Kawamura, M., Imai, J., Watanabe, S., et al. (2009). Constitutive activation of nuclear factor-kappaB is preferentially involved in the proliferation of basal-like subtype breast cancer cell lines. Cancer Sci. 100, 1668-1674.   DOI
32 Yamamoto, M., Ito, T., Shimizu, T., Ishida, T., Semba, K., Watanabe, S., Yamaguchi, N., and Inoue, J. (2010). Epigenetic alteration of the $NF-{\kappa}B$-inducing kinase (NIK) gene is involved in enhanced NIK expression in basal-like breast cancer. Cancer Sci. 101, 2391-2397.   DOI
33 Rocha, S., Campbell, K.J., and Perkins, N.D. (2003). p53- and Mdm2-independent repression of NF-kappa B transactivation by the ARF tumor suppressor. Mol. Cell 12, 15-25.   DOI
34 Leucci, E., Cocco, M., Onnis, A., De Falco, G., van Cleef, P., Bellan, C., van Rijk, A., Nyagol, J., Byakika, B., Lazzi, S., et al. (2008). MYC translocation-negative classical Burkitt lymphoma cases: an alternative pathogenetic mechanism involving miRNA deregulation. J. Pathol. 216, 440-450.   DOI
35 Yu, X., Riley, T., and Levine, A.J. (2009). The regulation of the endosomal compartment by p53 the tumor suppressor gene. FEBS J. 276, 2201-2212.   DOI
36 Zhang, S., Shan, C., Kong, G., Du, Y., Ye, L., and Zhang, X. (2012). MicroRNA-520e suppresses growth of hepatoma cells by targeting the $NF-{\kappa}B$-inducing kinase (NIK). Oncogene 31, 3607-3620.   DOI
37 Bartel, D.P. (2018). Metazoan MicroRNAs. Cell 173, 20-51.   DOI
38 Zhang, Q., Lenardo, M.J., and Baltimore, D. (2017). 30 years of $NF-{\kappa}B$: a blossoming of relevance to human pathobiology. Cell 168, 37-57.   DOI
39 Rahal, R., Frick, M., Romero, R., Korn, J.M., Kridel, R., Chan, F.C., Meissner, B., Bhang, H.E., Ruddy, D., Kauffmann, A., et al. (2014). Pharmacological and genomic profiling identifies $NF-{\kappa}B$-targeted treatment strategies for mantle cell lymphoma. Nat. Med. 20, 87-92.   DOI
40 Ravi, R., Mookerjee, B., van Hensbergen, Y., Bedi, G.C., Giordano, A., El-Deiry, W.S., Fuchs, E.J., and Bedi, A. (1998). p53-mediated repression of nuclear factor-kappaB RelA via the transcriptional integrator p300. Cancer Res. 58, 4531-4536.
41 Slabakova, E., Culig, Z., Remsik, J., and Soucek, K. (2017). Alternative mechanisms of miR-34a regulation in cancer. Cell Death Dis. 8, e3100.   DOI
42 Sullivan, K.D., Galbraith, M.D., Andrysik, Z., and Espinosa, J.M. (2018). Mechanisms of transcriptional regulation by p53. Cell Death Differ. 25, 133-143.   DOI
43 Sun, S.C. (2017). The non-canonical $NF-{\kappa}B$ pathway in immunity and inflammation. Nat. Rev. Immunol. 17, 545-558.   DOI
44 Suzuki, H.I., Yamagata, K., Sugimoto, K., Iwamoto, T., Kato, S., and Miyazono, K. (2009). Modulation of microRNA processing by p53. Nature 460, 529-533.   DOI
45 Van Roosbroeck, K. and Calin, G.A. (2017). Cancer hallmarks and MicroRNAs: the therapeutic connection. Adv. Cancer Res. 135, 119-149.   DOI
46 Tay, Y., Zhang, J., Thomson, A.M., Lim, B., and Rigoutsos, I. (2008). MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455, 1124-1128.   DOI
47 Vallabhapurapu, S. and Karin, M. (2009). Regulation and function of NF-kappaB transcription factors in the immune system. Annu. Rev. Immunol. 27, 693-733.   DOI