Browse > Article
http://dx.doi.org/10.14348/molcells.2019.0114

Structural Study of Monomethyl Fumarate-Bound Human GAPDH  

Park, Jun Bae (Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University)
Park, Hayeong (Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University)
Son, Jimin (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University)
Ha, Sang-Jun (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University)
Cho, Hyun-Soo (Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University)
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a core enzyme of the aerobic glycolytic pathway with versatile functions and is associated with cancer development. Recently, Kornberg et al. published the detailed correlation between GAPDH and di- or monomethyl fumarate (DMF or MMF), which are well-known GAPDH antagonists in the immune system. As an extension, herein, we report the crystal structure of MMF-bound human GAPDH at $2.29{\AA}$. The MMF molecule is covalently linked to the catalytic Cys152 of human GAPDH, and inhibits the catalytic activity of the residue and dramatically reduces the enzymatic activity of GAPDH. Structural comparisons between $NAD^+$-bound GAPDH and MMF-bound GAPDH revealed that the covalently linked MMF can block the binding of the $NAD^+$ cosubstrate due to steric hindrance of the nicotinamide portion of the $NAD^+$ molecule, illuminating the specific mechanism by which MMF inhibits GAPDH. Our data provide insights into GAPDH antagonist development for GAPDH-mediated disease treatment.
Keywords
crystallography; glyceraldehyde-3-phosphate dehydrogenase; inhibitor; monomethyl fumarate;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Colell, A., Ricci, J.E., Tait, S., Milasta, S., Maurer, U., Bouchier-Hayes, L., Fitzgerald, P., Guio-Carrion, A., Waterhouse, N.J., Li, C.W., et al. (2007). GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 130, 385.
2 Collaborative Computational Project, Number 4. (1994). The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760-763.   DOI
3 Endo, A., Hasumi, K., Sakai, K., and Kanbe, T. (1985). Specific-inhibition of glyceraldehyde-3-phosphate dehydrogenase by koningic acid (heptelidic acid). J. Antibiot. 38, 920-925.   DOI
4 Ganapathy-Kanniappan, S., Geschwind, J.F.H., Kunjithapatham, R., Buijs, M., Vossen, J.A., Tchernyshyov, I., Cole, R.N., Syed, L.H., Rao, P.P., Ota, S., et al. (2009). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is pyruvylated during 3-bromopyruvate mediated cancer cell death. Anticancer Res. 29, 4909-4918.
5 Ganapathy-Kanniappan, S., Kunjithapatham, R., and Geschwind, J.F. (2012). Glyceraldehyde-3-phosphate dehydrogenase: a promising target for molecular therapy in hepatocellular carcinoma. Oncotarget 3, 940-953.   DOI
6 Guido, R.V.C., Balliano, T.L., Andricopulo, A.D., and Oliva, G. (2009). Kinetic and crystallographic studies on glyceraldehyde-3-phosphate dehydrogenase from trypanosoma cruzi in complex with iodoacetate. Lett. Drug Des. Discov. 6, 210-214.   DOI
7 Kato, M., Sakai, K., and Endo, A. (1992). Koningic acid (heptelidic acid) inhibition of glyceraldehyde-3-phosphate dehydrogenases from various sources. Biochim. Biophys. Acta 1120, 113-116.   DOI
8 Kornberg, M.D., Bhargava, P., Kim, P.M., Putluri, V., Snowman, A.M., Putluri, N., Calabresi, P.A., and Snyder, S.H. (2018). Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science 360, 449-453.   DOI
9 Landeck, L., Asadullah, K., Amasuno, A., Pau-Charles, I., and Mrowietz, U. (2018). Dimethyl fumarate (DMF) vs. monoethyl fumarate (MEF) salts for the treatment of plaque psoriasis: a review of clinical data. Arch. Dermatol. Res. 310, 475-483.   DOI
10 Liberti, M.V., Dai, Z.W., Wardell, S.E., Baccile, J.A., Liu, X.J., Gao, X., Baldi, R., Mehrmohamadi, M., Johnson, M.O., Madhukar, N.S., et al. (2017). A predictive model for selective targeting of the Warburg effect through GAPDH inhibition with a natural product. Cell Metab. 26, 648-659.e8.   DOI
11 McKee, R.W., Wong, W., and Landman, M. (1965). Effects of iodoacetate on glycolysis and respiration in Ehrlich-Lettre ascites carcinoma cells. Biochim. Biophys. Acta 105, 410-423.   DOI
12 Mrowietz, U., Christophers, E., and Altmeyer, P. (1999). Treatment of severe psoriasis with fumaric acid esters: scientific background and guidelines for therapeutic use. The German Fumaric Acid Ester Consensus Conference. Br. J. Dermatol. 141, 424-429.   DOI
13 Nakajima, H., Amano, W., Kubo, T., Fukuhara, A., Ihara, H., Azuma, Y.T., Tajima, H., Inui, T., Sawa, A., and Takeuchi, T. (2009). Glyceraldehyde-3-phosphate dehydrogenase aggregate formation participates in oxidative stress-induced cell death. J. Biol. Chem. 284, 34331-34341.   DOI
14 Ray, M., Basu, N., and Ray, S. (1997). Inactivation of glyceraldehyde-3-phosphate dehydrogenase of human malignant cells by methylglyoxal. Mol. Cell Biochem. 177, 21-26.   DOI
15 Reis, M., Alves, C.N., Lameira, J., Tunon, I., Marti, S., and Moliner, V. (2013). The catalytic mechanism of glyceraldehyde 3-phosphate dehydrogenase from Trypanosoma cruzi elucidated via the QM/MM approach. Phys. Chem. Chem. Phys. 15, 3772-3785.   DOI
16 Sirover, M.A. (2012). Subcellular dynamics of multifunctional protein regulation: mechanisms of GAPDH intracellular translocation. J. Cell Biochem. 113, 2193-2200.   DOI
17 Sakai, K., Hasumi, K., and Endo, A. (1991). Identification of koningic acid (heptelidic acid)-modified site in rabbit muscle glyceraldehyde-3-phosphate dehydrogenase. Biochim. Biophys. Acta 1077, 192-196.   DOI
18 Schmidt, M.M., and Dringen, R. (2009). Differential effects of iodoacetamide and iodoacetate on glycolysis and glutathione metabolism of cultured astrocytes. Front. Neuroenergetics 1, 1.   DOI
19 Sirover, M.A. (2005). New nuclear functions of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in mammalian cells. J. Cell Biochem. 95, 45-52.   DOI
20 Sirover, M.A. (2011). On the functional diversity of glyceraldehyde-3-phosphate dehydrogenase: biochemical mechanisms and regulatory control. Biochim. Biophys. Acta 1810, 741-751.   DOI
21 Villanueva, A., Chiang, D.Y., Newell, P., Peix, J., Thung, S., Alsinet, C., Tovar, V., Roayaie, S., Minguez, B., Sole, M., et al. (2008). Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology 135, 1972-1983.   DOI
22 White, M.R., Khan, M.M., Deredge, D., Ross, C.R., Quintyn, R., Zucconi, B.E., Wysocki, V.H., Wintrode, P.L., Wilson, G.M., and Garcin, E.D. (2015). A dimer interface mutation in glyceraldehyde 3-phosphate dehydrogenase regulates its binding to AU-rich RNA. J. Biol. Chem. 290, 4129.   DOI
23 Bomprezzi, R. (2015). Dimethyl fumarate in the treatment of relapsingremitting multiple sclerosis: an overview. Ther. Adv. Neurol. Disord. 8, 20-30.   DOI
24 Xing, C., LaPorte, J.R., Barbay, J.K., and Myers, A.G. (2004). Identification of GAPDH as a protein target of the saframycin antiproliferative agents. Proc. Natl. Acad. Sci. U. S. A. 101, 5862-5866.   DOI
25 Yamamoto, S., Takashima, S., Ogawa, H., Kuroda, T., Yamamoto, M., Takeda, A., and Nakmaura, H. (1999). Granulocyte-colony-stimulating-factorproducing hepatocellular carcinoma. J. Gastroenterol. 34, 640-644.   DOI
26 Zhou, Y., Yi, X., Stoffer, J.B., Bonafe, N., Gilmore-Hebert, M., McAlpine, J., and Chambers, S.K. (2008). The multifunctional protein glyceraldehyde-3-phosphate dehydrogenase is both regulated and controls colonystimulating factor-1 messenger RNA stability in ovarian cancer. Mol. Cancer Res. 6, 1375-1384.   DOI
27 Zhu, X.D., Zhang, J.B., Zhuang, P.Y., Zhu, H.G., Zhang, W., Xiong, Y.Q., Wu, W.Z., Wang, L., Tang, Z.Y., and Sun, H.C. (2008). High expression of macrophage colony-stimulating factor in peritumoral liver tissue is associated with poor survival after curative resection of hepatocellular carcinoma. J. Clin. Oncol. 26, 2707-2716.   DOI
28 Ahuja, M., Ammal Kaidery, N., Yang, L., Calingasan, N., Smirnova, N., Gaisin, A., Gaisina, I.N., Gazaryan, I., Hushpulian, D.M., Kaddour-Djebbar, I., et al. (2016). Distinct Nrf2 signaling mechanisms of fumaric acid esters and their role in neuroprotection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced experimental Parkinson's-like disease. J. Neurosci. 36, 6332-6351.   DOI
29 Araki, K., Kishihara, F., Takahashi, K., Matsumata, T., Shimura, T., Suehiro, T., and Kuwano, H. (2007). Hepatocellular carcinoma producing a granulocyte colony-stimulating factor: report of a resected case with a literature review. Liver Int. 27, 716-721.   DOI
30 Blair, H.A. (2018). Dimethyl fumarate: a review in moderate to severe plaque psoriasis. Drugs 78, 123-130.   DOI
31 Colell, A., Green, D.R., and Ricci, J.E. (2009). Novel roles for GAPDH in cell death and carcinogenesis. Cell Death Differ. 16, 1573-1581.   DOI