Browse > Article
http://dx.doi.org/10.14348/molcells.2019.0037

Neurodevelopmental Aspects of RASopathies  

Kim, Ye Eun (Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH))
Baek, Seung Tae (Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH))
Abstract
RAS gene mutations are frequently found in one third of human cancers. Affecting approximately 1 in 1,000 newborns, germline and somatic gain-of-function mutations in the components of RAS/mitogen-activated protein kinase (RAS/MAPK) pathway has been shown to cause developmental disorders, known as RASopathies. Since RAS-MAPK pathway plays essential roles in proliferation, differentiation and migration involving developmental processes, individuals with RASopathies show abnormalities in various organ systems including central nervous system. The frequently seen neurological defects are developmental delay, macrocephaly, seizures, neurocognitive deficits, and structural malformations. Some of the defects stemmed from dysregulation of molecular and cellular processes affecting early neurodevelopmental processes. In this review, we will discuss the implications of RAS-MAPK pathway components in neurodevelopmental processes and pathogenesis of RASopathies.
Keywords
neurodevelopment; RAS; RASopathy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kubara, K., Yamazaki, K., Ishihara, Y., Naruto, T., Lin, H.T., Nishimura, K., Ohtaka, M., Nakanishi, M., Ito, M., Tsukahara, K., et al. (2018). Status of KRAS in iPSCs impacts upon self-renewal and differentiation propensity. Stem Cell Reports 11, 380-394.   DOI
2 Lee, D.Y., Yeh, T.H., Emnett, R.J., White, C.R., and Gutmann, D.H. (2010). Neurofibromatosis-1 regulates neuroglial progenitor proliferation and glial differentiation in a brain region-specific manner. Genes Dev. 24, 2317-2329.   DOI
3 Li, S., Balmain, A., and Counter, C.M. (2018). A model for RAS mutation patterns in cancers: finding the sweet spot. Nat. Rev. Cancer 18, 767-777.   DOI
4 Li, S., Mattar, P., Dixit, R., Lawn, S.O., Wilkinson, G., Kinch, C., Eisenstat, D., Kurrasch, D.M., Chan, J.A., and Schuurmans, C. (2014). RAS/ERK signaling controls proneural genetic programs in cortical development and gliomagenesis. J. Neurosci. 34, 2169-2190.   DOI
5 Liu, X., Li, Y., Zhang, Y., Lu, Y., Guo, W., Liu, P., Zhou, J., Xiang, Z., and He, C. (2011). SHP-2 promotes the maturation of oligodendrocyte precursor cells through Akt and ERK1/2 signaling in vitro. PLoS One 6, e21058.   DOI
6 Niihori, T., Aoki, Y., Narumi, Y., Neri, G., Cave, H., Verloes, A., Okamoto, N., Hennekam, R.C.M., Gillessen-Kaesbach, G., Wieczorek, D., et al. (2006). Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Nat. Genet. 38, 294-296.   DOI
7 Paquin, A., Hordo, C., Kaplan, D.R., and Miller, F.D. (2009). Costello syndrome H-Ras alleles regulate cortical development. Dev. Biol. 330, 440-451.   DOI
8 Paridaen, J.T. and Huttner, W.B. (2014). Neurogenesis during development of the vertebrate central nervous system. EMBO Rep. 15, 351-364.   DOI
9 Pfeiffer, V., Gotz, R., Camarero, G., Heinsen, H., Blum, R., and Rapp, U.R. (2018). Impaired neuronal maturation of hippocampal neural progenitor cells in mice lacking CRAF. PLoS One 13, e0192067.   DOI
10 Perrino, F., Licchelli, S., Serra, G., Piccini, G., Caciolo, C., Pasqualetti, P., Cirillo, F., Leoni, C., Digilio, M.C., Zampino, G., et al. (2018). Psychopathological features in Noonan syndrome. Eur. J. Paediatr. Neurol. 22, 170-177.   DOI
11 Pierpont, E.I., Ellis Weismer, S., Roberts, A.E., Tworog-Dube, E., Pierpont, M.E., Mendelsohn, N.J., and Seidenberg, M.S. (2010). The language phenotype of children and adolescents with Noonan syndrome. J. Speech Lang. Hear. Res. 53, 917-932.   DOI
12 Pierpont, E.I., Pierpont, M.E., Mendelsohn, N.J., Roberts, A.E., Tworog-Dube, E., and Seidenberg, M.S. (2009). Genotype differences in cognitive functioning in Noonan syndrome. Genes Brain Behav. 8, 275-282.   DOI
13 Prabowo, A.S., Iyer, A.M., Veersema, T.J., Anink, J.J., Schouten-Van Meeteren, A.Y.N., Spliet, W.G.M., Van Rijen, P.C., Ferrier, C.H., Capper, D., Thom, M., et al. (2014). BRAF V600E mutation is associated with mTOR signaling activation in glioneuronal tumors. Brain Pathol. 24, 52-66.   DOI
14 Rauen, K.A. (2013). The RASopathies. Annu. Rev. Genomics Hum. Genet. 14, 355-369.   DOI
15 Rhee, Y.H., Yi, S.H., Kim, J.Y., Chang, M.Y., Jo, A.Y., Kim, J., Park, C.H., Cho, J.Y., Choi, Y.J., Sun, W., et al. (2016). Neural stem cells secrete factors facilitating brain regeneration upon constitutive Raf-Erk activation. Sci. Rep. 6, 32025.   DOI
16 Bajenaru, M.L., Donahoe, J., Corral, T., Reilly, K.M., Brophy, S., Pellicer, A., and Gutmann, D.H. (2001). Neurofibromatosis 1 (NF1) heterozygosity results in a cell-autonomous growth advantage for astrocytes. Glia 33, 314-323.   DOI
17 Rodriguez-Viciana, P. and Rauen, K.A. (2008). Biochemical characterization of novel germline BRAF and MEK mutations in Cardio-Facio-Cutaneous syndrome. In Methods in Enzymology, Balch, W.E., Der, C.J., and Hall, A., eds. (Cambridge, MA, USA: Academic Press), pp. 277-289.
18 Aoki, K. (2005). Local phosphatidylinositol 3,4,5-trisphosphate accumulation recruits Vav2 and Vav3 to activate Rac1/Cdc42 and initiate neurite outgrowth in nerve growth factor-stimulated PC12 cells. Mol. Biol. Cell 16, 2207-2217.   DOI
19 Aoki, Y., Niihori, T., Kawame, H., Kurosawa, K., Ohashi, H., Tanaka, Y., Filocamo, M., Kato, K., Suzuki, Y., Kure, S., et al. (2005). Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nat. Genet. 37, 1038-1040.   DOI
20 Arendt, T., Gartner, U., Seeger, G., Barmashenko, G., Palm, K., Mittmann, T., Yan, L., Hummeke, M., Behrbohm, J., Bruckner, M.K., et al. (2004). Neuronal activation of Ras regulates synaptic connectivity. Eur. J. Neurosci. 19, 2953-2966.   DOI
21 Bajenaru, M.L., Zhu, Y., Hedrick, N.M., Donahoe, J., Parada, L.F., and Gutmann, D.H. (2002). Astrocyte-specific inactivation of the neurofibromatosis 1 gene (NF1) is insufficient for astrocytoma formation. Mol. Cell. Biol. 22, 5100-5113.   DOI
22 Santoro, C., Giugliano, T., Melone, M.A.B., Cirillo, M., Schettino, C., Bernardo, P., Cirillo, G., Perrotta, S., and Piluso, G. (2018). Multiple spinal nerve enlargement and SOS1 mutation: further evidence of overlap between neurofibromatosis type 1 and Noonan phenotype. Clin. Genet. 93, 138-143.   DOI
23 Romano, A.A., Allanson, J.E., Dahlgren, J., Gelb, B.D., Hall, B., Pierpont, M.E., Roberts, A.E., Robinson, W., Takemoto, C.M., and Noonan, J.A. (2010). Noonan syndrome: clinical features, diagnosis, and management guidelines. Pediatrics 126, 746-759.   DOI
24 Rooney, G.E., Goodwin, A.F., Depeille, P., Sharir, A., Schofield, C.M., Yeh, E., Roose, J.P., Klein, O.D., Rauen, K.A., Weiss, L.A., et al. (2016). Human iPS cell-derived neurons uncover the impact of increased Ras signaling in Costello Syndrome. J. Neurosci. 36, 142-152.   DOI
25 Ruggieri, M., Mastrangelo, M., Spalice, A., Mariani, R., Torrente, I., Polizzi, A., Bottillo, I., Di Biase, C., and Iannetti, P. (2011). Bilateral (opercular and paracentral lobular) polymicrogyria and neurofibromatosis type 1. Am. J. Med. Genet. A 155, 582-585.   DOI
26 Sarkozy, A., Carta, C., Moretti, S., Zampino, G., Digilio, M.C., Pantaleoni, F., Scioletti, A.P., Esposito, G., Cordeddu, V., Lepri, F., et al. (2009). Germline BRAF mutations in Noonan, LEOPARD, and Cardiofaciocutaneous syndromes: molecular diversity and associated phenotypic spectrum. Hum. Mutat. 30, 695-702.   DOI
27 Schubbert, S., Bollag, G., Lyubynska, N., Nguyen, H., Kratz, C.P., Zenker, M., Niemeyer, C.M., Molven, A., and Shannon, K. (2007). Biochemical and functional characterization of germ line KRAS mutations. Mol. Cell. Biol. 27, 7765-7770.   DOI
28 Brown, J.A., Diggs-Andrews, K.A., Gianino, S.M., and Gutmann, D.H. (2012). Neurofibromatosis-1 heterozygosity impairs CNS neuronal morphology in a cAMP/PKA/ROCK-dependent manner. Mol. Cell. Neurosci. 49, 13-22.   DOI
29 Bender, R.H.F., Haigis, K.M., and Gutmann, D.H. (2015). Activated K-Ras, but Not H-Ras or N-Ras, regulates brain neural stem cell proliferation in a Raf/Rb-dependent manner. Stem Cells 33, 1998-2010.   DOI
30 Bourne, H.R., Sanders, D.A., and McCormick, F. (1990). The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348, 125-132.   DOI
31 Camarero, G., Tyrsin, O.Y., Xiang, C., Pfeiffer, V., Pleiser, S., Wiese, S., Gotz, R., and Rapp, U.R. (2006). Cortical migration defects in mice expressing A-RAF from the B-RAF locus. Mol. Cell. Biol. 26, 7103-7115.   DOI
32 Castle, B., Baser, M.E., Huson, S.M., Cooper, D.N., and Upadhyaya, M. (2003). Evaluation of genotype-phenotype correlations in neurofibromatosis type 1. J. Med. Genet. 40, e109.   DOI
33 Cesarini, L., Alfieri, P., Pantaleoni, F., Vasta, I., Cerutti, M., Petrangeli, V., Mariotti, P., Leoni, C., Ricci, D., Vicari, S., et al. (2009). Cognitive profile of disorders associated with dysregulation of the RAS/MAPK signaling cascade. Am. J. Med. Genet. A 149, 140-146.
34 Chardin, P., Camonis, J.H., Gale, N.W., Van Aelst, L., Schlessinger, J., Wigler, M.H., and Bar-Sagi, D. (1993). Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2. Science 260, 1338-1343.   DOI
35 Sondermann, H., Soisson, S.M., Boykevisch, S., Yang, S.S., Bar-Sagi, D., and Kuriyan, J. (2004). Structural analysis of autoinhibition in the Ras activator son of sevenless. Cell 119, 393-405.   DOI
36 Schubbert, S., Zenker, M., Rowe, S.L., Boll, S., Klein, C., Bollag, G., Van Der Burgt, I., Musante, L., Kalscheuer, V., Wehner, L.E., et al. (2006). Germline KRAS mutations cause Noonan syndrome. Nat. Genet. 38, 331-336.   DOI
37 Seeger, G., Gartner, U., Holzer, M., and Arendt, T. (2003). Constitutive expression of p21H-RasVal12 in neurons induces increased axonal size and dendritic microtubule density in vivo. J. Neurosci. Res. 74, 868-874.   DOI
38 Sol-Church, K., Stabley, D.L., Demmer, L.A., Agbulos, A., Lin, A.E., Smoot, L., Nicholson, L., and Gripp, K.W. (2009). Male-to-male transmission of Costello syndrome: G12S HRAS germline mutation inherited from a father with somatic mosaicism. Am. J. Med. Genet. A 149A, 315-321.   DOI
39 Tartaglia, M., Martinelli, S., Stella, L., Bocchinfuso, G., Flex, E., Cordeddu, V., Zampino, G., van der Burgt, I., Palleschi, A., Petrucci, T.C., et al. (2006). Diversity and functional consequences of germline and somatic PTPN11 mutations in human disease. Am. J. Hum. Genet. 78, 279-290.   DOI
40 Tartaglia, M., Pennacchio, L.A., Zhao, C., Yadav, K.K., Fodale, V., Sarkozy, A., Pandit, B., Oishi, K., Martinelli, S., Schackwitz, W., et al. (2007). Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nat. Genet. 39, 75-79.   DOI
41 Tian, X., Gotoh, T., Tsuji, K., Lo, E.H., Huang, S., and Feig, L.A. (2004). Developmentally regulated role for Ras-GRFs in coupling NMDA glutamate receptors to Ras, Erk and CREB. EMBO J. 23, 1567-1575.   DOI
42 Duenas, D.A., Preissig, S., Summitt, R.L., Wilroy, R.S., Lemmi, H., and Dews, J.E. (1973). Neurologic manifestations of the Noonan syndrome. South. Med. J. 66, 193-196.   DOI
43 Chen, Y.H., Gianino, S.M., and Gutmann, D.H. (2015). Neurofibromatosis-1 regulation of neural stem cell proliferation and multilineage differentiation operates through distinct RAS effector pathways. Genes Dev. 29, 1677-1682.   DOI
44 Cutting, L.E., Cooper, K.L., Koth, C.W., Mostofsky, S.H., Kates, W.R., Denckla, M.B., and Kaufmann, W.E. (2002). Megalencephaly in NF1: predominantly white matter contribution and mitigation by ADHD. Neurology 59, 1388-1394.   DOI
45 Dasgupta, B., Dugan, L.L., and Gutmann, D.H. (2003). The neurofibromatosis 1 gene product neurofibromin regulates pituitary adenylate cyclase-activating polypeptide-mediated signaling in astrocytes. J. Neurosci. 23, 8949-8954.   DOI
46 Dasgupta, B. and Gutmann, D.H. (2005). Neurofibromin regulates neural stem cell proliferation, survival, and astroglial differentiation in vitro and in vivo. J. Neurosci. 25, 5584-5594.   DOI
47 Delrue, M.A., Chateil, J.F., Arveiler, B., and Lacombe, D. (2003). Costello syndrome and neurological abnormalities. Am. J. Med. Genet. A 123A, 301-305.   DOI
48 Dugan, L.L., Kim, J.S., Zhang, Y., Bart, R.D., Sun, Y., Holtzman, D.M., and Gutmann, D.H. (1999). Differential effects of cAMP in neurons and astrocytes. Role of B-raf. J. Biol. Chem. 274, 25842-25848.   DOI
49 Tuveson, D.A., Shaw, A.T., Willis, N.A., Silver, D.P., Jackson, E.L., Chang, S., Mercer, K.L., Grochow, R., Hock, H., Crowley, D., et al. (2004). Endogenous oncogenic K-rasG12-Dstimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 5, 375-387.   DOI
50 Tien, A.C., Tsai, H.H., Molofsky, A.V., McMahon, M., Foo, L.C., Kaul, A., Dougherty, J.D., Heintz, N., Gutmann, D.H., Barres, B.A., et al. (2012). Regulated temporal-spatial astrocyte precursor cell proliferation involves BRAF signalling in mammalian spinal cord. Development 139, 2477-2487.   DOI
51 Urosevic, J., Sauzeau, V., Soto-Montenegro, M.L., Reig, S., Desco, M., Wright, E.M.B., Canamero, M., Mulero, F., Ortega, S., Bustelo, X.R., et al. (2011). Constitutive activation of B-Raf in the mouse germ line provides a model for human Cardio-Facio-Cutaneous syndrome. Proc. Natl. Acad. Sci. 108, 5015-5020.   DOI
52 Wang, Y., Kim, E., Wang, X., Novitch, B.G., Yoshikawa, K., Chang, L.S., and Zhu, Y. (2012). ERK inhibition rescues defects in fate specification of Nf1-deficient neural progenitors and brain abnormalities. Cell 150, 816-830.   DOI
53 Wiese, S., Pei, G., Karch, C., Troppmair, J., Holtmann, B., Rapp, U.R., and Sendtner, M. (2001). Specific function of B-Raf in mediating survival of embryonic motoneurons and sensory neurons. Nat. Neurosci. 4, 137-142.   DOI
54 Williams, V.C., Lucas, J., Babcock, M.A., Gutmann, D.H., Korf, B., and Maria, B.L. (2009). Neurofibromatosis type 1 revisited. Pediatrics 123, 124-133.   DOI
55 Yeh, E., Dao, D.Q., Wu, Z.Y., Kandalam, S.M., Camacho, F.M., Tom, C., Zhang, W., Krencik, R., Rauen, K.A., Ullian, E.M., et al. (2018). Patient-derived iPSCs show premature neural differentiation and neuron type-specific phenotypes relevant to neurodevelopment. Mol. Psychiatry 23, 1687-1698.   DOI
56 Galabova-Kovacs, G., Catalanotti, F., Matzen, D., Reyes, G.X., Zezula, J., Herbst, R., Silva, A., Walter, I., and Baccarini, M. (2008). Essential role of B-raf in oligodendrocyte maturation and myelination during postnatal central nervous system development. J. Cell Biol. 180, 947-955.   DOI
57 Ehrman, L.A., Nardini, D., Ehrman, S., Rizvi, T.A., Gulick, J., Krenz, M., Dasgupta, B., Robbins, J., Ratner, N., Nakafuku, M., et al. (2014). The protein tyrosine phosphatase Shp2 is required for the generation of oligodendrocyte progenitor cells and myelination in the mouse telencephalon. J. Neurosci. 34, 3767-3778.   DOI
58 Fivaz, M., Bandara, S., Inoue, T., and Meyer, T. (2008). Robust neuronal symmetry breaking by Ras-triggered local positive feedback. Curr. Biol. 18, 44-50.   DOI
59 Fyffe-Maricich, S.L., Karlo, J.C., Landreth, G.E., and Miller, R.H. (2011). The ERK2 mitogen-activated protein kinase regulates the timing of oligodendrocyte differentiation. J. Neurosci. 31, 843-850.   DOI
60 Gartner, U., Alpar, A., Reimann, F., Seeger, G., Heumann, R., and Arendt, T. (2004a). Constitutive Ras activity induces hippocampal hypertrophy and remodeling of pyramidal neurons in synRas mice. J. Neurosci. Res. 77, 630-641.   DOI
61 Gartner, U., Alpar, A., Seeger, G., Heumann, R., and Arendt, T. (2004b). Enhanced Ras activity in pyramidal neurons induces cellular hypertrophy and changes in afferent and intrinsic connectivity in synRas mice. Int. J. Dev. Neurosci. 22, 165-173.   DOI
62 Gauthier, A.S., Furstoss, O., Araki, T., Chan, R., Neel, B.G., Kaplan, D.R.R., and Miller, F.D. (2007). Control of CNS cell-fate decisions by SHP-2 and its dysregulation in Noonan syndrome. Neuron 54, 245-262.   DOI
63 Zhu, Y., Romero, M.I., Ghosh, P., Ye, Z., Charnay, P., Rushing, E.J., Marth, J.D., and Parada, L.F. (2001). Ablation of NF1 function in neurons induces abnormal development of cerebral cortex and reactive gliosis in the brain. Genes Dev. 15, 859-876.   DOI
64 Yoon, G., Rosenberg, J., Blaser, S., and Rauen, K.A. (2007). Neurological complications of Cardio-Facio-Cutaneous syndrome. Dev. Med. Child Neurol. 49, 894-899.   DOI
65 Zhong, J., Li, X., McNamee, C., Chen, A.P., Baccarini, M., and Snider, W.D. (2007). Raf kinase signaling functions in sensory neuron differentiation and axon growth in vivo. Nat. Neurosci. 10, 598-607.   DOI
66 Zhu, Y., Park, J., Hu, X., Zheng, K., Li, H., Cao, Q., Feng, G.S., and Qiu, M. (2010). Control of oligodendrocyte generation and proliferation by Shp2 protein tyrosine phosphatase. Glia 58, 1407-1414.   DOI
67 Zhu, Y., Shen, J., Sun, T., Jiang, H., Xu, K., Samuthrat, T., Xie, Y., Weng, Y., Li, Y., Xie, Q., et al. (2018). Loss of Shp2 within radial glia is associated with cerebral cortical dysplasia, glial defects of cerebellum and impaired sensory-motor development in newborn mice. Mol. Med. Rep. 17, 3170-3177.
68 Gutmann, D.H., Loehr, A., Zhang, Y., Kim, J., Henkemeyer, M., and Cashen, A. (1999). Haploinsufficiency for the neurofibromatosis 1 (NF1) tumor suppressor results in increased astrocyte proliferation. Oncogene 18, 4450-4459.   DOI
69 Groesser, L., Herschberger, E., Ruetten, A., Ruivenkamp, C., Lopriore, E., Zutt, M., Langmann, T., Singer, S., Klingseisen, L., Schneider-Brachert, W., et al. (2012). Postzygotic HRAS and KRAS mutations cause nevus sebaceous and Schimmelpenning syndrome. Nat. Genet. 44, 783-787.   DOI
70 Gronych, J., Korshunov, A., Bageritz, J., Milde, T., Jugold, M., Hambardzumyan, D., Remke, M., Hartmann, C., Witt, H., Jones, D.T.W., et al. (2011). An activated mutant BRAF kinase domain is sufficient to induce pilocytic astrocytoma in mice. J. Clin. Invest. 121, 1344-1348.   DOI
71 Hanashima, C. and Toma, K. (2015). Switching modes in corticogenesis: mechanisms of neuronal subtype transitions and integration in the cerebral cortex. Front. Neurosci. 9, 1-18.   DOI
72 Hegedus, B., Dasgupta, B., Shin, J.E., Emnett, R.J., Hart-Mahon, E.K., Elghazi, L., Bernal-Mizrachi, E., and Gutmann, D.H. (2007). Neurofibromatosis-1 regulates neuronal and glial cell differentiation from neuroglial progenitors in vivo by both cAMP- and Ras-dependent mechanisms. Cell Stem Cell 1, 443-457.   DOI
73 Keilhack, H., David, F.S., Mcgregor, M., Cantley, L.C., and Neel, B.G. (2005). Diverse biochemical properties of Shp2 mutants. J. Biol. Chem. 280, 30984-30993.   DOI
74 Huang, Y.S., Cheng, C.Y., Chueh, S.H., Hueng, D.Y., Huang, Y.F., Chu, C.M., Wu, S.T., Tai, M.C., Liang, C.M., Liao, M.H., et al. (2012). Involvement of SHP2 in focal adhesion, migration and differentiation of neural stem cells. Brain Dev. 34, 674-684.   DOI
75 Hunt, D.L. and Castillo, P.E. (2012). Synaptic plasticity of NMDA receptors: mechanisms and functional implications. Curr. Opin. Neurobiol. 22, 496-508.   DOI
76 Ishii, A., Fyffe-Maricich, S.L., Furusho, M., Miller, R.H., and Bansal, R. (2012). ERK1/ERK2 MAPK signaling is required to increase myelin thickness independent of oligodendrocyte differentiation and initiation of myelination. J. Neurosci. 32, 8855-8864.   DOI
77 Karlsgodt, K.H., Rosser, T., Lutkenhoff, E.S., Cannon, T.D., Silva, A., and Bearden, C.E. (2012). Alterations in white matter microstructure in Neurofibromatosis-1. PLoS One 7, e47854.   DOI
78 Ke, Y., Zhang, E.E., Hagihara, K., Wu, D., Pang, Y., Klein, R., Curran, T., Ranscht, B., and Feng, G.S. (2007). Deletion of Shp2 in the brain leads to defective proliferation and differentiation in neural stem cells and early postnatal lethality. Mol. Cell. Biol. 27, 6706-6717.   DOI
79 Kobayashi, T., Aoki, Y., Niihori, T., Cave, H., Verloes, A., Okamoto, N., Kawame, H., Fujiwara, I., Takada, F., Ohata, T., et al. (2010). Molecular and clinical analysis of RAF1 in Noonan syndrome and related disorders: dephosphorylation of serine 259 as the essential mechanism for mutant activation. Hum. Mutat. 31, 284-294.   DOI
80 Koh, H.Y., Kim, S.H., Jang, J., Kim, H., Han, S., Lim, J.S., Son, G., Choi, J., Park, B.O., Do Heo, W., et al. (2018). BRAF somatic mutation contributes to intrinsic epileptogenicity in pediatric brain tumors. Nat. Med. 24, 1662-1668.   DOI
81 Krencik, R., Hokanson, K.C., Narayan, A.R., Dvornik, J., Rooney, G.E., Rauen, K.A., Weiss, L.A., Rowitch, D.H., and Ullian, E.M. (2015). Dysregulation of astrocyte extracellular signaling in Costello syndrome. Sci. Transl. Med. 7, 286ra66.   DOI