Browse > Article
http://dx.doi.org/10.14348/molcells.2019.0078

Site-Specific Labeling of Proteins Using Unnatural Amino Acids  

Lee, Kyung Jin (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST))
Kang, Deokhee (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST))
Park, Hee-Sung (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST))
Abstract
Labeling of a protein with a specific dye or tag at defined positions is a critical step in tracing the subtle behavior of the protein and assessing its cellular function. Over the last decade, many strategies have been developed to achieve selective labeling of proteins in living cells. In particular, the site-specific unnatural amino acid (UAA) incorporation technique has gained increasing attention since it enables attachment of various organic probes to a specific position of a protein in a more precise way. In this review, we describe how the UAA incorporation technique has expanded our ability to achieve site-specific labeling and visualization of target proteins for functional analyses in live cells.
Keywords
bioorthogonal; click chemistry; genetic code expansion; site-specific labeling; unnatural amino acid;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Adams, S.R., Campbell, R.E., Gross, L.A., Martin, B.R., Walkup, G.K., Yao, Y., Llopis, J., and Tsien, R.Y. (2002). New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J. Am. Chem. Soc. 124, 6063-6076.   DOI
2 Agard, N.J., Prescher, J.A., and Bertozzi, C.R. (2004). A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046-15047.   DOI
3 Alamudi, S.H., Satapathy, R., Kim, J., Su, D., Ren, H., Das, R., Hu, L., Alvarado-Martínez, E., Lee, J.Y., Hoppmann, C., et al. (2016). Development of background-free tame fluorescent probes for intracellular live cell imaging. Nat. Commun. 7, 11964.   DOI
4 Ambrogelly, A., Palioura, S., and Soll, D. (2007). Natural expansion of the genetic code. Nat. Chem. Biol. 3, 29-35.   DOI
5 Baskin, J.M., Prescher, J.A., Laughlin, S.T., Agard, N.J., Chang, P.V., Miller, I.A., Lo, A., Codelli, J.A., and Bertozzi, C.R. (2007). Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl. Acad. Sci. U. S. A. 104, 16793-16797.   DOI
6 Besanceney-Webler, C., Jiang, H., Zheng, T., Feng, L., Soriano del Amo, D., Wang, W., Klivansky, L.M., Marlow, F.L., Liu, Y., and Wu, P. (2011). Increasing the efficacy of bioorthogonal click reactions for bioconjugation: a comparative study. Angew. Chem. Int. Ed. Engl. 50, 8051-8056.   DOI
7 Blackman, M.L., Royzen, M., and Fox, J.M. (2008). Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J. Am. Chem. Soc. 130, 13518-13519.   DOI
8 Blight, S.K., Larue, R.C., Mahapatra, A., Longstaff, D.G., Chang, E., Zhao, G., Kang, P.T., Green-Church, K.B., Chan, M.K., and Krzycki, J.A. (2004). Direct charging of tRNA(CUA) with pyrrolysine in vitro and in vivo. Nature 431, 333-335.   DOI
9 Boger, D.L. (1986). Diels-Alder reactions of heterocyclic aza dienes. Scope and applications. Chem. Rev. 86, 781-793.   DOI
10 Borrmann, A., Milles, S., Plass, T., Dommerholt, J., Verkade, J.M., Wiessler, M., Schultz, C., van Hest, J.C., van Delft, F.L., and Lemke, E.A. (2012). Genetic encoding of a bicyclo[6.1.0]nonyne-charged amino acid enables fast cellular protein imaging by metal-free ligation. Chembiochem 13, 2094-2099.   DOI
11 Brewer, G.J. (2010). Risks of copper and iron toxicity during aging in humans. Chem. Res. Toxicol. 23, 319-326.   DOI
12 Bryson, D.I., Fan, C., Guo, L.T., Miller, C., Soll, D., and Liu, D.R. (2017). Continuous directed evolution of aminoacyl-tRNA synthetases. Nat. Chem. Biol. 13, 1253-1260.   DOI
13 Calve, S., Witten, A.J., Ocken, A.R., and Kinzer-Ursem, T.L. (2016). Incorporation of non-canonical amino acids into the developing murine proteome. Sci. Rep. 6, 32377.   DOI
14 Carlson, B.A., Xu, X.M., Kryukov, G.V., Rao, M., Berry, M.J., Gladyshev, V.N., and Hatfield, D.L. (2004). Identification and characterization of phosphoseryl-tRNA[Ser]Sec kinase. Proc. Natl. Acad. Sci. U. S. A. 101, 12848-12853.   DOI
15 Chan, T.R., Hilgraf, R., Sharpless, K.B., and Fokin, V.V. (2004). Polytriazoles as copper(I)-stabilizing ligands in catalysis. Org. Lett. 6, 2853-2855.   DOI
16 Charbon, G., Brustad, E., Scott, K.A., Wang, J., Lobner-Olesen, A., Schultz, P.G., Jacobs-Wagner, C., and Chapman, E. (2011a). Subcellular protein localization by using a genetically encoded fluorescent amino acid. Chembiochem 12, 1818-1821.   DOI
17 Charbon, G., Wang, J., Brustad, E., Schultz, P.G., Horwich, A.L., Jacobs-Wagner, C., and Chapman, E. (2011b). Localization of GroEL determined by in vivo incorporation of a fluorescent amino acid. Bioorg. Med. Chem. Lett. 21, 6067-6070.   DOI
18 Chatterjee, A., Guo, J., Lee, H.S., and Schultz, P.G. (2013). A genetically encoded fluorescent probe in mammalian cells. J. Am. Chem. Soc. 135, 12540-12543.   DOI
19 Costantini, L.M., and Snapp, E.L. (2015). Going viral with fluorescent proteins. J. Virol. 89, 9706-9708.   DOI
20 Kennedy, D.C., McKay, C.S., Legault, M.C., Danielson, D.C., Blake, J.A., Pegoraro, A.F., Stolow, A., Mester, Z., and Pezacki, J.P. (2011). Cellular consequences of copper complexes used to catalyze bioorthogonal click reactions. J. Am. Chem. Soc. 133, 17993-18001.   DOI
21 Crivat, G., and Taraska, J.W. (2012). Imaging proteins inside cells with fluorescent tags. Trends Biotechnol. 30, 8-16.   DOI
22 Das, D.K., Govindan, R., Nikic-Spiegel, I., Krammer, F., Lemke, E.A., and Munro, J.B. (2018). Direct visualization of the conformational dynamics of single influenza hemagglutinin trimers. Cell 174, 926-937.e12.   DOI
23 Debets, M.F., van der Doelen, C.W., Rutjes, F.P., and van Delft, F.L. (2010). Azide: a unique dipole for metal-free bioorthogonal ligations. Chembiochem 11, 1168-1184.   DOI
24 Dieterich, D.C., Link, A.J., Graumann, J., Tirrell, D.A., and Schuman, E.M. (2006). Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc. Natl. Acad. Sci. U. S. A. 103, 9482-9487.   DOI
25 Dommerholt, J., Rutjes, F.P.J.T., and van Delft, F.L. (2016). Strain-promoted 1,3-dipolar cycloaddition of cycloalkynes and organic azides. Top. Curr. Chem. (Cham.) 374, 16.   DOI
26 Dommerholt, J., Schmidt, S., Temming, R., Hendriks, L.J., Rutjes, F.P., van Hest, J.C., Lefeber, D.J., Friedl, P., and van Delft, F.L. (2010). Readily accessible bicyclononynes for bioorthogonal labeling and three-dimensional imaging of living cells. Angew. Chem. Int. Ed. Engl. 49, 9422-9425.   DOI
27 Erdmann, I., Marter, K., Kobler, O., Niehues, S., Abele, J., Muller, A., Bussmann, J., Storkebaum, E., Ziv, T., Thomas, U., et al. (2015). Cell-selective labelling of proteomes in Drosophila melanogaster. Nat. Commun. 6, 7521.   DOI
28 Fernandez, M.V., and Freed, E.O. (2017). "Expand and Click": a new method for labeling HIV-1 envelope glycoproteins. Cell Chem. Biol. 24, 548-550.   DOI
29 Kim, J., and Heo, W.D. (2018). Synergistic ensemble of optogenetic actuators and dynamic indicators in cell biology. Mol. Cells 41, 809-817.   DOI
30 Keppler, A., Gendreizig, S., Gronemeyer, T., Pick, H., Vogel, H., and Johnsson, K. (2003). A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21, 86-89.   DOI
31 Kolb, H.C., Finn, M.G., and Sharpless, K.B. (2001). Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl. 40, 2004-2021.   DOI
32 Kozma, E., Nikic, I., Varga, B.R., Aramburu, I.V., Kang, J.H., Fackler, O.T., Lemke, E.A., and Kele, P. (2016). Hydrophilic trans-cyclooctenylated noncanonical amino acids for fast intracellular protein labeling. Chembiochem 17, 1518-1524.   DOI
33 Kurra, Y., Odoi, K.A., Lee, Y.J., Yang, Y., Lu, T., Wheeler, S.E., Torres-Kolbus, J., Deiters, A., and Liu, W.R. (2014). Two rapid catalyst-free click reactions for in vivo protein labeling of genetically encoded strained alkene/alkyne functionalities. Bioconjug. Chem. 25, 1730-1738.   DOI
34 Lang, K., and Chin, J.W. (2014a). Bioorthogonal reactions for labeling proteins. ACS Chem. Biol. 9, 16-20.   DOI
35 Lang, K., and Chin, J.W. (2014b). Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chem. Rev. 114, 4764-4806.   DOI
36 Lang, K., Davis, L., and Chin, J.W. (2015). Genetic encoding of unnatural amino acids for labeling proteins. Methods Mol. Biol. 1266, 217-228.   DOI
37 Lang, K., Davis, L., Torres-Kolbus, J., Chou, C., Deiters, A., and Chin, J.W. (2012a). Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. Nat. Chem. 4, 298-304.   DOI
38 Greiss, S., and Chin, J.W. (2011). Expanding the genetic code of an animal. J. Am. Chem. Soc. 133, 14196-14199.   DOI
39 Chen, X., and Wu, Y.W. (2016). Selective chemical labeling of proteins. Org. Biomol. Chem. 14, 5417-5439.   DOI
40 Gautier, A., Juillerat, A., Heinis, C., Correa, I.R., Jr., Kindermann, M., Beaufils, F., and Johnsson, K. (2008). An engineered protein tag for multiprotein labeling in living cells. Chem. Biol. 15, 128-136.   DOI
41 Han, S., Yang, A., Lee, S., Lee, H.W., Park, C.B., and Park H.S. (2017). Expanding the genetic code of Mus musculus. Nat. Commun. 8, 14568.   DOI
42 Hancock, S.M., Uprety, R., Deiters, A., and Chin, J.W. (2010). Expanding the genetic code of yeast for incorporation of diverse unnatural amino acids via a pyrrolysyl-tRNA synthetase/tRNA pair. J. Am. Chem. Soc. 132, 14819-14824.   DOI
43 He, X.P., Zeng, Y.L., Zang, Y., Li, J., Field, R.A., and Chen, G.R. (2016). Carbohydrate CuAAC click chemistry for therapy and diagnosis. Carbohydr. Res. 429, 1-22.   DOI
44 Herner, A., and Lin, Q. (2016). Photo-triggered click chemistry for biological applications. Top. Curr. Chem. (Cham.) 374, 1.   DOI
45 Hong, V., Presolski, S.I., Ma, C., and Finn, M.G. (2009). Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. Angew. Chem. Int. Ed. Engl. 48, 9879-9883.   DOI
46 Forchhammer, K., Leinfelder, W., and Bock, A. (1989). Identification of a novel translation factor necessary for the incorporation of selenocysteine into protein. Nature 342, 453-456.   DOI
47 Huisgen, R., Szeimies, G., and Mobius, L. (1967). 1.3-Dipolare Cycloadditionen, XXXII. Kinetik der additionen organischer Azide an CCMehrfachbindungen. Chemische Berichte 100, 2494-2507.   DOI
48 Lee, H.S., Guo, J., Lemke, E.A., Dimla, R.D., and Schultz, P.G. (2009). Genetic incorporation of a small, environmentally sensitive, fluorescent probe into proteins in Saccharomyces cerevisiae. J. Am. Chem. Soc. 131, 12921-12923.   DOI
49 Lang, K., Davis, L., Wallace, S., Mahesh, M., Cox, D.J., Blackman, M.L., Fox, J.M., and Chin, J.W. (2012b). Genetic encoding of bicyclononynes and trans-cyclooctenes for site-specific protein labeling in vitro and in live mammalian cells via rapid fluorogenic Diels-Alder reactions. J. Am. Chem. Soc. 134, 10317-10320.   DOI
50 Laughlin, S.T., Baskin, J.M., Amacher, S.L., and Bertozzi, C.R. (2008). In vivo imaging of membrane-associated glycans in developing zebrafish. Science 320, 664-667.   DOI
51 Leinfelder, W., Zehelein, E., Mandrand-Berthelot, M.A., and Bock, A. (1988). Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine. Nature 331, 723-725.   DOI
52 Li, F., Zhang, H., Sun, Y., Pan, Y., Zhou, J., and Wang, J. (2013). Expanding the genetic code for photoclick chemistry in E. coli, mammalian cells, and A. thaliana. Angew. Chem. Int. Ed. Engl. 52, 9700-9704.   DOI
53 Li, L., and Zhang, Z. (2016). Development and applications of the coppercatalyzed azide-alkyne cycloaddition (CuAAC) as a bioorthogonal reaction. Molecules 21, 1393.   DOI
54 Liu, C.C., and Schultz, P.G. (2010). Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79, 413-444.   DOI
55 Liu, K., Enns, B., Evans, B., Wang, N., Shang, X., Sittiwong, W., Dussault, P.H., and Guo, J. (2017). A genetically encoded cyclobutene probe for labelling of live cells. Chem. Commun. (Camb.) 53, 10604-10607.   DOI
56 Liu, W., Brock, A., Chen, S., Chen, S., and Schultz, P.G. (2007). Genetic incorporation of unnatural amino acids into proteins in mammalian cells. Nat. Methods 4, 239-244.   DOI
57 Lotze, J., Reinhardt, U., Seitz, O., and Beck-Sickinger, A.G. (2016). Peptidetags for site-specific protein labelling in vitro and in vivo. Mol. Biosyst. 12, 1731-1745.   DOI
58 Kayser, H., Zeitler, R., Kannicht, C., Grunow, D., Nuck, R., and Reutter, W. (1992). Biosynthesis of a nonphysiological sialic acid in different rat organs, using N-propanoyl-D-hexosamines as precursors. J. Biol. Chem. 267, 16934-16938.   DOI
59 Liu, Z., Lavis, L.D., and Betzig, E. (2015). Imaging live-cell dynamics and structure at the single-molecule level. Mol. Cell 58, 644-659.   DOI
60 Los, G.V., Encell, L.P., McDougall, M.G., Hartzell, D.D., Karassina, N., Zimprich, C., Wood, M.G., Learish, R., Ohana, R.F., Urh, M., et al. (2008). HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373-382.   DOI
61 Mbua, N.E., Guo, J., Wolfert, M.A., Steet, R., and Boons, G.J. (2011). Strainpromoted alkyne-azide cycloadditions (SPAAC) reveal new features of glycoconjugate biosynthesis. Chembiochem 12, 1912-1921.   DOI
62 McKay, C.S., and Finn, M.G. (2014). Click chemistry in complex mixtures: bioorthogonal bioconjugation. Chem. Biol. 21, 1075-1101.   DOI
63 Milles, S., Tyagi, S., Banterle, N., Koehler, C., VanDelinder, V., Plass, T., Neal, A.P., and Lemke, E.A. (2012). Click strategies for single-molecule protein fluorescence. J. Am. Chem. Soc. 134, 5187-5195.   DOI
64 Molteni, G., Orlandi, M., and Broggini, G. (2000). Nitrilimine cycloadditions in aqueous media. J. Chem. Soc. 1, 3742-3745.
65 Mukai, T., Lajoie, M.J., Englert, M., and Soll, D. (2017). Rewriting the genetic code. Annu. Rev. Microbiol. 71, 557-577.   DOI
66 Neef, A.B., and Schultz, C. (2009). Selective fluorescence labeling of lipids in living cells. Angew. Chem. Int. Ed. Engl. 48, 1498-1500.   DOI
67 Nikic, I., Kang, J.H., Girona, G.E., Aramburu, I.V., and Lemke, E.A. (2015). Labeling proteins on live mammalian cells using click chemistry. Nat. Protoc. 10, 780-791.   DOI
68 Oliveira, B.L., Guo, Z., and Bernardes, G.J.L. (2017). Inverse electron demand Diels-Alder reactions in chemical biology. Chem. Soc. Rev. 46, 4895-4950.   DOI
69 Nikic, I., Plass, T., Schraidt, O., Szymanski, J., Briggs, J.A., Schultz, C., and Lemke, E.A. (2014). Minimal tags for rapid dual-color live-cell labeling and super-resolution microscopy. Angew. Chem. Int. Ed. Engl. 53, 2245-2249.   DOI
70 Ning, X., Guo, J., Wolfert, M.A., and Boons, G.J. (2008). Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast huisgen cycloadditions. Angew. Chem. Int. Ed. Engl. 47, 2253-2255.   DOI
71 Peng, T., and Hang, H.C. (2016). Site-specific bioorthogonal labeling for fluorescence imaging of intracellular proteins in living cells. J. Am. Chem. Soc. 138, 14423-14433.   DOI
72 Plass, T., Milles, S., Koehler, C., Schultz, C., and Lemke, E.A. (2011). Genetically encoded copper-free click chemistry. Angew. Chem. Int. Ed. Engl. 50, 3878-3881.   DOI
73 Plass, T., Milles, S., Koehler, C., Szymanski, J., Mueller, R., Wiessler, M., Schultz, C., and Lemke, E.A. (2012). Amino acids for Diels-Alder reactions in living cells. Angew Chem. Int. Ed. Engl. 51, 4166-4170.   DOI
74 Polycarpo, C., Ambrogelly, A., Berube, A., Winbush, S.M., McCloskey, J.A., Crain, P.F., Wood, J.L., and Soll, D. (2004). An aminoacyl-tRNA synthetase that specifically activates pyrrolysine. Proc. Natl. Acad. Sci. U. S. A. 101, 12450-12454.   DOI
75 Prescher, J.A., and Bertozzi, C.R. (2005). Chemistry in living systems. Nat. Chem. Biol. 1, 13-21.   DOI
76 Prokhorov, A.M., and Kozhevnikov, D.N. (2012). Reactions of triazines and tetrazines with dienophiles. Chem. Heterocycl. Compd. 48, 1153-1176.   DOI
77 Serfling, R., Lorenz, C., Etzel, M., Schicht, G., Bottke, T., Morl, M., and Coin, I. (2018). Designer tRNAs for efficient incorporation of non-canonical amino acids by the pyrrolysine system in mammalian cells. Nucleic Acids Res. 46, 1-10.   DOI
78 Ramil, C.P., and Lin, Q. (2014). Photoclick chemistry: a fluorogenic lighttriggered in vivo ligation reaction. Curr. Opin. Chem. Biol. 21, 89-95.   DOI
79 Saxon, E., and Bertozzi, C.R. (2000). Cell surface engineering by a modified Staudinger reaction. Science 287, 2007-2010.   DOI
80 Sengupta, P., Van Engelenburg, S., and Lippincott-Schwartz, J. (2012). Visualizing cell structure and function with point-localization superresolution imaging. Dev. Cell 23, 1092-1102.   DOI
81 Shaner, N.C., Patterson, G.H., and Davidson, M.W. (2007). Advances in fluorescent protein technology. J. Cell Sci. 120, 4247-4260.   DOI
82 Singh, I., and Heaney, F. (2011). Solid phase strain promoted "click" modification of DNA via [3+2]-nitrile oxide-cyclooctyne cycloadditions. Chem. Commun. (Camb.) 47, 2706-2708.   DOI
83 Sletten, E.M., and Bertozzi, C.R. (2009). Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. Engl. 48, 6974-6998.   DOI
84 Song, W., Wang, Y., Qu, J., Madden, M.M., and Lin, Q. (2008). A photoinducible 1,3-dipolar cycloaddition reaction for rapid, selective modification of tetrazole-containing proteins. Angew. Chem. Int. Ed. Engl. 47, 2832-2835.   DOI
85 Stephens, D.J., and Allan, V.J. (2003). Light microscopy techniques for live cell imaging. Science 300, 82-86.   DOI
86 Stone, S.E., Glenn, W.S., Hamblin, G.D., and Tirrell, D.A. (2017). Cell-selective proteomics for biological discovery. Curr. Opin. Chem. Biol. 36, 50-57.   DOI
87 Swiderska, K.W., Szlachcic, A., Czyrek, A., Zakrzewska, M., and Otlewski, J. (2017). Site-specific conjugation of fibroblast growth factor 2 (FGF2) based on incorporation of alkyne-reactive unnatural amino acid. Bioorg. Med. Chem. 25, 3685-3693.   DOI
88 Su Hui Teo, C., Serwa, R.A., and O'Hare, P. (2016). Spatial and temporal resolution of global protein synthesis during HSV infection using bioorthogonal precursors and click chemistry. PLoS Pathog. 12, e1005927.   DOI
89 Summerer, D., Chen, S., Wu, N., Deiters, A., Chin, J.W., and Schultz, P.G. (2006). A genetically encoded fluorescent amino acid. Proc. Natl. Acad. Sci. U. S. A. 103, 9785-9789.   DOI
90 Suzuki, T., Miller, C., Guo, L.T., Ho, J.M.L., Bryson, D.I., Wang, Y.S., Liu, D.R., and Soll, D. (2017). Crystal structures reveal an elusive functional domain of pyrrolysyl-tRNA synthetase. Nat. Chem. Biol. 13, 1261-1266.   DOI
91 Thalhammer, F., Wallfahrer, U., and Saue, J. (1990). Reaktivitat einfacher offenkettiger und cyclischer dienophile bei Diels-Alder-reaktionen mit inversem elektronenbedarf. Tetrahedron Lett. 31, 6851-6854.   DOI
92 Tom Dieck, S., Muller, A., Nehring, A., Hinz, F.I., Bartnik, I., Schuman, E.M., and Dieterich, D.C. (2012). Metabolic labeling with noncanonical amino acids and visualization by chemoselective fluorescent tagging. Curr. Protoc. Cell Biol. 56, 7.11.1-7.11.29.
93 Toomre, D., and Bewersdorf, J. (2010). A new wave of cellular imaging. Annu. Rev. Cell Dev. Biol. 26, 285-314.   DOI
94 Tornoe, C.W., Christensen, C., and Meldal, M. (2002). Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057-3064.   DOI
95 Tsien, R.Y. (1998). The green fluorescent protein. Annu. Rev. Biochem. 67, 509-544.   DOI
96 Wan, W., Tharp, J.M., and Liu, W.R. (2014). Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool. Biochim. Biophys. Acta 1844, 1059-1070.   DOI
97 Uttamapinant, C., Howe, J.D., Lang, K., Beránek, V., Davis, L., Mahesh, M., Barry, N.P., and Chin, J.W. (2015). Genetic code expansion enables live-cell and super-resolution imaging of site-specifically labeled cellular proteins. J. Am. Chem. Soc. 137, 4602-4605.   DOI
98 van de Linde, S., Heilemann, M., and Sauer, M. (2012). Live-cell superresolution imaging with synthetic fluorophores. Annu. Rev. Phys. Chem. 63, 519-540.   DOI
99 Vreja, I.C., Nikic, I., Gottfert, F., Bates, M., Krohnert, K., Outeiro, T.F., Hell, S.W., Lemke, E.A., and Rizzoli, S.O. (2015). Super-resolution microscopy of clickable amino acids reveals the effects of fluorescent protein tagging on protein assemblies. ACS Nano 9, 11034-11041.   DOI
100 Wang, J., Xie, J., and Schultz, P.G. (2006). A genetically encoded fluorescent amino acid. J. Am. Chem. Soc. 128, 8738-8739.   DOI
101 Wang, Y., Vera, C.I., and Lin, Q. (2007). Convenient synthesis of highly functionalized pyrazolines via mild, photoactivated 1 ,3-dipolar cycloaddition. Org. Lett. 9, 4155-4158.   DOI
102 Weber, G., and Farris, F.J. (1979). Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-(dimethylamino) naphthalene. Biochemistry 18, 3075-3078.   DOI
103 Wu, Y., Zhu, H., Zhang, B., Liu, F., Chen, J., Wang, Y., Wang, Y., Zhang, Z., Wu, L., Si, L., et al. (2016). Synthesis of site-specific radiolabeled antibodies for radioimmunotherapy via genetic code expansion. Bioconjug. Chem. 27, 2460-2468.   DOI
104 Zhou, Z., Cironi, P., Lin, A.J., Xu, Y., Hrvatin, S., Golan, D.E., Silver, P.A., Walsh, C.T., and Yin, J. (2007). Genetically encoded short peptide tags for orthogonal protein labeling by Sfp and AcpS phosphopantetheinyl transferases. ACS Chem. Biol. 2, 337-346.   DOI
105 Young, D.D., and Schultz, P.G. (2018). Playing with the molecules of life. ACS Chem. Biol. 13, 854-870.   DOI
106 Yu, Z., Pan, Y., Wang, Z., Wang, J., and Lin, Q. (2012). Genetically encoded cyclopropene directs rapid, photoclick-chemistry-mediated protein labeling in mammalian cells. Angew. Chem. Int. Ed. Engl. 51, 10600-10604.   DOI
107 Yuan, J., Palioura, S., Salazar, J.C., Su, D., O'Donoghue, P., Hohn, M.J., Cardoso, A.M., Whitman, W.B., and Soll, D. (2006). RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea. Proc. Natl. Acad. Sci. U. S. A. 103, 18923-18927.   DOI
108 Zhang, J., Yan, S., He, Z., Ding, C., Zhai, T., Chen, Y., Li, H., Yang, G., Zhou, X., and Wang, P. (2018). Small unnatural amino acid carried raman tag for molecular imaging of genetically targeted proteins. J. Phys. Chem. Lett. 9, 4679-4685.   DOI