Browse > Article
http://dx.doi.org/10.14348/molcells.2019.2431

Microbial Colonization at Early Life Promotes the Development of Diet-Induced CD8αβ Intraepithelial T Cells  

Jung, Jisun (Academy of Immunology and Microbiology, Institute for Basic Science (IBS))
Surh, Charles D. (Academy of Immunology and Microbiology, Institute for Basic Science (IBS))
Lee, You Jeong (Academy of Immunology and Microbiology, Institute for Basic Science (IBS))
Abstract
Intraepithelial lymphocytes (IELs) develop through the continuous interaction with intestinal antigens such as commensal microbiome and diet. However, their respective roles and mutual interactions in the development of IELs are largely unknown. Here, we showed that dietary antigens regulate the development of the majority of $CD8{\alpha}{\beta}$ IELs in the small intestine and the absence of commensal microbiota particularly during the weaning period, delay the development of IELs. When we tested specific dietary components, such as wheat or combined corn, soybean and yeast, they were dependent on commensal bacteria for the timely development of diet-induced $CD8{\alpha}{\beta}$ IELs. In addition, supplementation of intestinal antigens later in life was inefficient for the full induction of $CD8{\alpha}{\beta}$ IELs. Overall, our findings suggest that early exposure to commensal bacteria is important for the proper development of dietary antigen-dependent immune repertoire in the gut.
Keywords
antigen free; dietary antigen; germ free; intraepithelial T cells; microbiota;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Abadie, V., Discepolo, V., and Jabri, B. (2012). Intraepithelial lymphocytes in celiac disease immunopathology. Semin. Immunopathol. 34, 551-566.   DOI
2 Anderson, K.G., Mayer-Barber, K., Sung, H., Beura, L., James, B.R., Taylor, J.J., Qunaj, L., Griffith, T.S., Vezys, V., Barber, D.L., et al. (2014). Intravascular staining for discrimination of vascular and tissue leukocytes. Nat. Protoc. 9, 209-222.   DOI
3 Anderson, K.G., Sung, H., Skon, C.N., Lefrancois, L., Deisinger, A., Vezys, V., and Masopust, D. (2012). Cutting edge: intravascular staining redefines lung CD8 T cell responses. J. Immunol. 189, 2702-2706.   DOI
4 Bol-Schoenmakers, M., Marcondes Rezende, M., Bleumink, R., Boon, L., Man, S., Hassing, I., Fiechter, D., Pieters, R.H., and Smit, J.J. (2011). Regulation by intestinal gammadelta T cells during establishment of food allergic sensitization in mice. Allergy 66, 331-340.   DOI
5 Buzoni-Gatel, D., Debbabi, H., Moretto, M., Dimier-Poisson, I.H., Lepage, A.C., Bout, D.T., and Kasper, L.H. (1999). Intraepithelial lymphocytes traffic to the intestine and enhance resistance to Toxoplasma gondii oral infection. J. Immunol. 162, 5846-5852.
6 Catalan-Serra, I., Sandvik, A.K., Bruland, T., and Andreu-Ballester, J.C. (2017). Gammadelta T cells in crohn's disease: a new player in the disease pathogenesis? J. Crohns. Colitis 11, 1135-1145.   DOI
7 Cheroutre, H., Lambolez, F., and Mucida, D. (2011). The light and dark sides of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 11, 445-456.   DOI
8 Cebra, J.J. (1999). Influences of microbiota on intestinal immune system development. Am. J. Clin. Nutr. 69, 1046S-1051S.   DOI
9 Cervantes-Barragan, L., Chai, J.N., Tianero, M.D., Di Luccia, B., Ahern, P.P., Merriman, J., Cortez, V.S., Caparon, M.G., Donia, M.S., Gilfillan, S., et al. (2017). Lactobacillus reuteri induces gut intraepithelial $CD4^+CD8{\alpha}{\alpha}^+$ T cells. Science 357, 806-810.   DOI
10 Chardes, T., Buzoni-Gatel, D., Lepage, A., Bernard, F., and Bout, D. (1994). Toxoplasma gondii oral infection induces specific cytotoxic CD8 alpha/beta+ Thy-1+ gut intraepithelial lymphocytes, lytic for parasite-infected enterocytes. J. Immunol. 153, 4596-4603.
11 Chung, H., Pamp, S.J., Hill, J.A., Surana, N.K., Edelman, S.M., Troy, E.B., Reading, N.C., Villablanca, E.J., Wang, S., Mora, J.R., et al. (2012). Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149, 1578-1593.   DOI
12 Eggesbo, M., Botten, G., Stigum, H., Nafstad, P., and Magnus, P. (2003). Is delivery by cesarean section a risk factor for food allergy? J. Allergy Clin. Immunol. 112, 420-426.   DOI
13 Eggesbo, M., Botten, G., Stigum, H., Samuelsen, S.O., Brunekreef, B., and Magnus, P. (2005). Cesarean delivery and cow milk allergy/intolerance. Allergy 60, 1172-1173.   DOI
14 Helgeland, L., Dissen, E., Dai, K.Z., Midtvedt, T., Brandtzaeg, P., and Vaage, J.T. (2004). Microbial colonization induces oligoclonal expansions of intraepithelial CD8 T cells in the gut. Eur. J. Immunol. 34, 3389-3400.   DOI
15 Kawaguchi-Miyashita, M., Shimizu, K., Nanno, M., Shimada, S., Watanabe, T., Koga, Y., Matsuoka, Y., Ishikawa, H., Hashimoto, K., and Ohwaki, M. (1996). Development and cytolytic function of intestinal intraepithelial T lymphocytes in antigen-minimized mice. Immunology 89, 268-273.   DOI
16 Hu, M.D., and Edelblum, K.L. (2017). Sentinels at the frontline: the role of intraepithelial lymphocytes in inflammatory bowel disease. Curr. Pharmacol. Rep. 3, 321-334.   DOI
17 Imaoka, A., Matsumoto, S., Setoyama, H., Okada, Y., and Umesaki, Y. (1996). Proliferative recruitment of intestinal intraepithelial lymphocytes after microbial colonization of germ-free mice. Eur. J. Immunol. 26, 945-948.   DOI
18 Ivanov, II, Atarashi, K., Manel, N., Brodie, E.L., Shima, T., Karaoz, U., Wei, D., Goldfarb, K.C., Santee, C.A., Lynch, S.V., et al. (2009). Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485-498.   DOI
19 Kim, K.S., Hong, S.W., Han, D., Yi, J., Jung, J., Yang, B.G., Lee, J.Y., Lee, M., and Surh, C.D. (2016). Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine. Science 351, 858-863.   DOI
20 Kunisawa, J., Takahashi, I., and Kiyono, H. (2007). Intraepithelial lymphocytes: their shared and divergent immunological behaviors in the small and large intestine. Immunol. Rev. 215, 136-153.   DOI
21 Latthe, M., Terry, L., and MacDonald, T.T. (1994). High frequency of CD8 alpha alpha homodimer-bearing T cells in human fetal intestine. Eur. J. Immunol. 24, 1703-1705.   DOI
22 Lee, K.H., Lee, C.H., Woo, J., Jeong, J., Jang, A.H., and Yoo, C.G. (2018). Cigarette smoke extract enhances IL-17A-induced IL-8 production via up-regulation of IL-17R in human bronchial epithelial cells. Mol. Cells 41, 282-289.   DOI
23 Menezes, J.S., Mucida, D.S., Cara, D.C., Alvarez-Leite, J.I., Russo, M., Vaz, N.M., and de Faria, A.M. (2003). Stimulation by food proteins plays a critical role in the maturation of the immune system. Int. Immunol. 15, 447-455.   DOI
24 Lepage, A.C., Buzoni-Gatel, D., Bout, D.T., and Kasper, L.H. (1998). Gut-derived intraepithelial lymphocytes induce long term immunity against Toxoplasma gondii. J. Immunol. 161, 4902-4908.
25 Maynard, C.L., Elson, C.O., Hatton, R.D., and Weaver, C.T. (2012). Reciprocal interactions of the intestinal microbiota and immune system. Nature 489, 231-241.   DOI
26 McDonald, B.D., Jabri, B., and Bendelac, A. (2018). Diverse developmental pathways of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 18, 514-525.   DOI
27 Mercer, N., Guzman, L., Cueto Rua, E., Drut, R., Ahmed, H., Vasta, G.R., Toscano, M.A., Rabinovich, G.A., and Docena, G.H. (2009). Duodenal intraepithelial lymphocytes of children with cow milk allergy preferentially bind the glycan-binding protein galectin-3. Int. J. Immunopathol. Pharmacol. 22, 207-217.   DOI
28 Pleasants, J.R., Johnson, M.H., and Wostmann, B.S. (1986). Adequacy of chemically defined, water-soluble diet for germfree BALB/c mice through successive generations and litters. J. Nutr. 116, 1949-1964.   DOI
29 Pope, C., Kim, S.K., Marzo, A., Masopust, D., Williams, K., Jiang, J., Shen, H., and Lefrancois, L. (2001). Organ-specific regulation of the CD8 T cell response to Listeria monocytogenes infection. J. Immunol. 166, 3402-3409.   DOI
30 Regnault, A., Cumano, A., Vassalli, P., Guy-Grand, D., and Kourilsky, P. (1994). Oligoclonal repertoire of the CD8 alpha alpha and the CD8 alpha beta TCR-alpha/beta murine intestinal intraepithelial T lymphocytes: evidence for the random emergence of T cells. J. Exp. Med. 180, 1345-1358.   DOI
31 Tajima, M., Wakita, D., Noguchi, D., Chamoto, K., Yue, Z., Fugo, K., Ishigame, H., Iwakura, Y., Kitamura, H., and Nishimura, T. (2008). IL-6-dependent spontaneous proliferation is required for the induction of colitogenic IL-17-producing CD8+ T cells. J. Exp. Med. 205, 1019-1027.   DOI
32 Regner, E.H., Ohri, N., Stahly, A., Gerich, M.E., Fennimore, B.P., Ir, D., Jubair, W.K., Gorg, C., Siebert, J., Robertson, C.E., et al. (2018). Functional intraepithelial lymphocyte changes in inflammatory bowel disease and spondyloarthritis have disease specific correlations with intestinal microbiota. Arthritis Res. Ther. 20, 149.   DOI
33 Sheridan, B.S., and Lefrancois, L. (2010). Intraepithelial lymphocytes: to serve and protect. Curr. Gastroenterol. Rep. 12, 513-521.   DOI
34 Sheridan, B.S., Pham, Q.M., Lee, Y.T., Cauley, L.S., Puddington, L., and Lefrancois, L. (2014). Oral infection drives a distinct population of intestinal resident memory CD8(+) T cells with enhanced protective function. Immunity 40, 747-757.   DOI
35 Williams, A.M., Bland, P.W., Phillips, A.C., Turner, S., Brooklyn, T., Shaya, G., Spicer, R.D., and Probert, C.S. (2004). Intestinal alpha beta T cells differentiate and rearrange antigen receptor genes in situ in the human infant. J. Immunol. 173, 7190-7199.   DOI
36 Umesaki, Y., Setoyama, H., Matsumoto, S., Imaoka, A., and Itoh, K. (1999). Differential roles of segmented filamentous bacteria and clostridia in development of the intestinal immune system. Infect. Immun. 67, 3504-3511.   DOI
37 Umesaki, Y., Setoyama, H., Matsumoto, S., and Okada, Y. (1993). Expansion of alpha beta T-cell receptor-bearing intestinal intraepithelial lymphocytes after microbial colonization in germ-free mice and its independence from thymus. Immunology 79, 32-37.