Browse > Article
http://dx.doi.org/10.14348/molcells.2018.0352

Alleviation of Senescence via ATM Inhibition in Accelerated Aging Models  

Kuk, Myeong Uk (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University)
Kim, Jae Won (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University)
Lee, Young-Sam (Well Aging Research Center)
Cho, Kyung A (Department of Biochemistry, Chonnam National University Medical School)
Park, Joon Tae (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University)
Park, Sang Chul (Well Aging Research Center)
Abstract
The maintenance of mitochondrial function is closely linked to the control of senescence. In our previous study, we uncovered a novel mechanism in which senescence amelioration in normal aging cells is mediated by the recovered mitochondrial function upon Ataxia telangiectasia mutated (ATM) inhibition. However, it remains elusive whether this mechanism is also applicable to senescence amelioration in accelerated aging cells. In this study, we examined the role of ATM inhibition on mitochondrial function in Hutchinson-Gilford progeria syndrome (HGPS) and Werner syndrome (WS) cells. We found that ATM inhibition induced mitochondrial functional recovery accompanied by metabolic reprogramming, which has been known to be a prerequisite for senescence alleviation in normal aging cells. Indeed, the induced mitochondrial metabolic reprogramming was coupled with senescence amelioration in accelerated aging cells. Furthermore, the therapeutic effect via ATM inhibition was observed in HGPS as evidenced by reduced progerin accumulation with concomitant decrease of abnormal nuclear morphology. Taken together, our data indicate that the mitochondrial functional recovery by ATM inhibition might represent a promising strategy to ameliorate the accelerated aging phenotypes and to treat age-related disease.
Keywords
ATM inhibition; HGPS; KU-60019; mitochondrial function; WS;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Verstraeten, V.L.R.M., Peckham, L.A., Olive, M., Capell, B.C., Collins, F.S., Nabel, E.G., Young, S.G., Fong, L.G., and Lammerding, J. (2011). Protein farnesylation inhibitors cause donut-shaped cell nuclei attributable to a centrosome separation defect. Proc. Natl. Acad. Sci. USA 108, 4997-5002.   DOI
2 Wallace, D.C. (1994). Mitochondrial DNA sequence variation in human evolution and disease. Proc.. Natl. Acad. Sci. USA 91, 8739-8746.   DOI
3 Weber, A.M., and Ryan, A.J. (2015). ATM and ATR as therapeutic targets in cancer. Pharmacol. Ther. 149, 124-138.   DOI
4 Yoo, S.M., and Jung, Y.K. (2018). A molecular approach to mitophagy and mitochondrial dynamics. Mol. Cells 41, 18-26.   DOI
5 Kang, H.T., and Hwang, E.S. (2009). Nicotinamide enhances mitochondria quality through autophagy activation in human cells. Aging Cell 8, 426-438.   DOI
6 Li, B., Iglesias-Pedraz, J.M., Chen, L.-Y., Yin, F., Cadenas, E., Reddy, S., and Comai, L. (2014). Downregulation of the werner syndrome protein induces a metabolic shift that compromises redox homeostasis and limits proliferation of cancer cells. Aging Cell 13, 367-378.   DOI
7 Kang, H.T., Park, J.T., Choi, K., Kim, Y., Choi, H.J.C., Jung, C.W., Lee, Y.-S., and Park, S.C. (2017). Chemical screening identifies ATM as a target for alleviating senescence. Nat. Chem. Biol. 13, 616-623.   DOI
8 Lachapelle, S., Gagne, J.-P., Garand, C., Desbiens, M., Coulombe, Y., Bohr, V.A., Hendzel, M.J., Masson, J.-Y., Poirier, G.G., and Lebel, M. (2011). Proteome-wide identification of WRN-interacting proteins in untreated and nuclease-treated samples. J. Proteome. Res. 10, 1216-1227.   DOI
9 Lee, H.C., Yin, P.H., Chi, C.W., and Wei, Y.H. (2002). Increase in mitochondrial mass in human fibroblasts under oxidative stress and during replicative cell senescence. J. Biomed. Sci. 9, 517-526.   DOI
10 McClintock, D., Gordon, L.B., and Djabali, K. (2006). Hutchinson-Gilford progeria mutant lamin A primarily targets human vascular cells as detected by an anti-Lamin A G608G antibody. Proc. Natl. Acad. Sci. USA 103, 2154-2159.   DOI
11 McKenzie, R., Fried, M.W., Sallie, R., Conjeevaram, H., Di Bisceglie, A.M., Park, Y., Savarese, B., Kleiner, D., Tsokos, M., Luciano, C., et al. (1995). Hepatic failure and lactic acidosis due to fialuridine (FIAU), an investigational nucleoside analogue for chronic hepatitis B. N. Engl. J. Med. 333, 1099-1105.   DOI
12 Mitsui, Y., and Schneider, E.L. (1976). Increased nuclear sizes in senescent human diploid fibroblast cultures. Exp. Cell Res. 100, 147-152.   DOI
13 Rivera-Torres, J., Acin-Perez, R., Cabezas-Sanchez, P., Osorio, F.G., Gonzalez-Gomez, C., Megias, D., Camara, C., Lopez-Otin, C., Enriquez, J.A., Luque-Garcia, J.L., et al. (2013). Identification of mitochondrial dysfunction in Hutchinson-Gilford progeria syndrome through use of stable isotope labeling with amino acids in cell culture. J. Proteomics. 91, 466-477.   DOI
14 Azqueta, A., Slyskova, J., Langie, S.A.S., O'Neill Gaivao, I., and Collins, A. (2014). Comet assay to measure DNA repair: approach and applications. Front. Genet. 5, 288.
15 Benhammou, V., Tardieu, M., Warszawski, J., Rustin, P., and Blanche, S. (2007). Clinical mitochondrial dysfunction in uninfected children born to HIV-infected mothers following perinatal exposure to nucleoside analogues. Environ. Mol. Mutagen. 48, 173-178.   DOI
16 Passos, J.F., Saretzki, G., Ahmed, S., Nelson, G., Richter, T., Peters, H., Wappler, I., Birket, M.J., Harold, G., Schaeuble, K., et al. (2007). Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLOS Biol. 5, e110.   DOI
17 Pekovic, V., Gibbs-Seymour, I., Markiewicz, E., Alzoghaibi, F., Benham, A.M., Edwards, R., Wenhert, M., von Zglinicki, T., and Hutchison, C.J. (2011). Conserved cysteine residues in the mammalian lamin A tail are essential for cellular responses to ROS generation. Aging Cell 10, 1067-1079.   DOI
18 Reunert, J., Wentzell, R., Walter, M., Jakubiczka, S., Zenker, M., Brune, T., Rust, S., and Marquardt, T. (2012). Neonatal progeria: increased ratio of progerin to lamin A leads to progeria of the newborn. Eur. J. Hum. Genet. 20, 933-937.   DOI
19 Robbins, E., Levine, E.M., and Eagle, H. (1970). Morphologic changes accompanying senescence of cultured human diploid cells. J. Exp. Med. 131, 1211-1222.   DOI
20 Rottenberg, H., and Wu, S. (1998). Quantitative assay by flow cytometry of the mitochondrial membrane potential in intact cells. Biochim. Biophys. Acta. 1404, 393-404.   DOI
21 Sahin, E., and Depinho, R.A. (2010). Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 464, 520-528.   DOI
22 Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens, M., Rubelj, I., and Pereira-Smith, O. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA 92, 9363-9367.   DOI
23 Oshima, J., Huang, S., Pae, C., Campisi, J., and Schiestl, R.H. (2002). Lack of WRN results in extensive deletion at nonhomologous joining ends. Cancer Res. 62, 547-551.
24 Brand, Martin D., and Nicholls, David G. (2011). Assessing mitochondrial dysfunction in cells. Biochem. J. 435, 297-312.   DOI
25 Brunk, U.T., and Terman, A. (2002). Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic. Biol. Med. 33, 611-619.   DOI
26 Cocheme, H.M., and Murphy, M.P. (2008). Complex I is the major site of mitochondrial superoxide production by paraquat. J. Biol. Chem. 283, 1786-1798.   DOI
27 Collins, F.S. (2016). Seeking a cure for one of the rarest diseases: progeria. Circulation 134, 126-129.   DOI
28 Collins, T.J. (2007). ImageJ for microscopy. BioTechniques 43, 25-30.   DOI
29 Debacq-Chainiaux, F., Erusalimsky, J.D., Campisi, J., and Toussaint, O. (2009). Protocols to detect senescence-associated beta-galactosidase (SA-[beta]gal) activity, a biomarker of senescent cells in culture and in vivo. Nat. Protocols 4, 1798-1806.   DOI
30 Drechsel, D.A., and Patel, M. (2009). Differential contribution of the mitochondrial respiratory chain complexes to reactive oxygen species production by redox cycling agents implicated in parkinsonism. Toxicol. Sci. 112, 427-434.   DOI
31 Gray, M.D., Shen, J.C., Kamath-Loeb, A.S., Blank, A., Sopher, B.L., Martin, G.M., Oshima, J., and Loeb, L.A. (1997). The werner syndrome protein is a DNA helicase. Nat. Genet. 17, 100-103.   DOI
32 Harhouri, K., Frankel, D., Bartoli, C., Roll, P., De Sandre-Giovannoli, A., and Levy, N. (2018). An overview of treatment strategies for Hutchinson-Gilford Progeria syndrome. Nucleus 9, 246-257.   DOI
33 Shimizu, K., Matsubara, K., Ohtaki, K., Fujimaru, S., Saito, O., and Shiono, H. (2003). Paraquat induces long-lasting dopamine overflow through the excitotoxic pathway in the striatum of freely moving rats. Brain Res. 976, 243-252.   DOI
34 Seo, A.Y., Joseph, A.-M., Dutta, D., Hwang, J.C.Y., Aris, J.P., and Leeuwenburgh, C. (2010). New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J. Cell Sci. 123, 2533-2542.   DOI
35 Shiloh, Y. (2006). The ATM-mediated DNA-damage response: taking shape. Trends Biochem. Sci. 31, 402-410.   DOI
36 Shiloh, Y., and Lederman, H.M. (2016). Ataxia-telangiectasia (A-T): An emerging dimension of premature ageing. Ageing Res. Rev. 33, 76-88.   DOI
37 Skoczynska, A., Budzisz, E., Dana, A., and Rotsztejn, H. (2015). New look at the role of progerin in skin aging. Prz. Menopauzalny. 14, 53-58.
38 Tohma, H., Hepworth, A.R., Shavlakadze, T., Grounds, M.D., and Arthur, P.G. (2011). Quantification of ceroid and lipofuscin in skeletal muscle. J. Histochem. Cytochem. 59, 769-779.   DOI