Browse > Article
http://dx.doi.org/10.14348/molcells.2018.0382

Calcium-Phosphate Crystals Promote RANKL Expression via the Downregulation of DUSP1  

Choi, YunJeong (Department of Oral Physiology, BK21 PLUS Project, and Institute of Translational Dental Sciences, School of Dentistry, Pusan National University)
Yoo, Ji Hyun (Department of Oral Physiology, BK21 PLUS Project, and Institute of Translational Dental Sciences, School of Dentistry, Pusan National University)
Lee, Youngkyun (Department of Biochemistry, School of Dentistry, Kyungpook National University)
Bae, Moon Kyoung (Department of Oral Physiology, BK21 PLUS Project, and Institute of Translational Dental Sciences, School of Dentistry, Pusan National University)
Kim, Hyung Joon (Department of Oral Physiology, BK21 PLUS Project, and Institute of Translational Dental Sciences, School of Dentistry, Pusan National University)
Abstract
Osteoarthritis (OA) is a naturally occurring, irreversible disorder and a major health burden. The disease is multifactorial, involving both physiological and mechanical processes, but calcium crystals have been associated intimately with its pathogenesis. This study tested the hypothesis that these crystals have a detrimental effect on the differentiation of osteoclasts and bone homeostasis. This study employed an osteoblastosteoclast coculture system that resembles in vivo osteoblastdependent osteoclast differentiation along with $Ca^{2+}$-phosphate-coated culture dishes. The calcium-containing crystals upregulated the expression of RANKL and increased the differentiation of osteoclasts significantly as a result. On the other hand, osteoblast differentiation was unaffected. MicroRNA profiling showed that dual-specificity phosphatases 1 (DUSP1) was associated with the increased RANKL expression. DUSP1 belongs to a family of MAPK phosphatases and is known to inactivate all three groups of MAPKs, p38, JNK, and ERK. Furthermore, knockdown of DUSP1 gene expression suggested that RANKL expression increases significantly in the absence of DUSP1 regulation. Microarray analysis of the DUSP1 mRNA levels in patients with pathological bone diseases also showed that the downregulated DUSP1 expression leads to increased expression of RANKL and consequently to the destruction of the bone observed in these patients. These findings suggest that calcium-containing crystals may play a crucial role in promoting RANKL-induced osteoclastogenesis via DUSP1.
Keywords
DUSP1; osteoarthritis; osteoclastogenesis; RANKL;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Macmullan, P., and McCarthy, G.M. (2012). The meniscus, calcification and osteoarthritis: a pathologic team. Arthritis Res. Ther. 12, 116.   DOI
2 MacMullan, P., McMahon, G., and McCarthy, G.M. (2011). Detection of basic calcium phosphate crystals in osteoarthritis. Joint Bone Spine. 78, 358-363.   DOI
3 Mansell, J.P., Collins, C., and Bailey, A.J. (2007) Bone, not cartilage, should be the major focus in osteoarthritis. Nat. Clin. Pract. Rheumatol. 3, 306-307.   DOI
4 McCarthy, G.M., and Cheung, H.S. (2009). Point: hydroxyapatite crystal deposition is intimately involved in the pathogenesis and progression of human osteoarthritis. Curr. Rheumatol. Rep. 11, 141-147.   DOI
5 Mi, H., Muruganujan, A., Casagrande, J.T., and Thomas, P.D. (2013). Large-scale gene function analysis with the PANTHER classification system. Nat. Protoc. 8, 1551-1566.   DOI
6 Molloy, E.S., and McCarthy, G.M. (2006). Calcium crystal deposition diseases: update on pathogenesis and manifestations. Rheum. Dis. Clin. North Am. 32, 383-400.   DOI
7 Nunes-Xavier, C., Roma-Mateo, C., Rios, P., Tarrega, C., Cejudo-Marin, R., Tabernero, L., and Pulido, R. (2011). Dual-specificity MAP kinase phosphatases as targets of cancer treatment. Anticancer. Agents Med. 11, 109-132.   DOI
8 O' Brien, C.A., Kern, B., Gubrij, I., Karsenty, G., and Manolagas, S.C. (2002). Cbfa1 doesn't regulate RANKL gene activity in stromal/osteoblastic cells. Bone. 30, 453-462.   DOI
9 Patterson, K.L., Brummer, T., O'Brien, P.M., and Daly, R.J. (2009). Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem. J. 418, 475-489.   DOI
10 Qvist, P., Bay-Jensen, A.C., Christiansen, C., Dam, EB., Pastoureau, P. and Karsdal, MA. (2008). The disease modifying osteoarthritis drug (DMOAD): is it in the horizon? Pharmacol. Res. 58, 1-7.   DOI
11 Camps, M., Nichols A., and Arkinstall S. (2000). Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J. 14, 6-16.   DOI
12 Boyle, W.J., Simonet, W.S., and Lacey, D.L. (2003). Osteoclast differentiation and activation. Nature 423, 337-342.   DOI
13 Brandt, K., Lohmander, L., Doherty, M. (1998). Pathogenesis of osteoarthritis. In: Osteoarthritis. Oxford: Oxford University Press. pp. 70-74.
14 Burr, D.B., and Radin, E.L. (2003). Microfractures and microcracks in subchondral bone: are they relevant to osteoarthrosis? Rheum. Dis. Clin. N. Am. 29, 675-685.   DOI
15 Corr, E.M., Cunningham, C.C., Helbert, L., McCarthy, G.M., and Dunne, A. (2017). Osteoarthritis associated basic calcium phosphate crystals activate membrane proximal kinases in human innate immune cells. Arthritis Res. Ther. 19, 23.   DOI
16 Karsdal, M.A., Leeming, D.J., Dam, E.B., Henriksen, K., Alexandersen, P., Pastoureau, P., Altman, R.D., and Christiansen, C. (2008). Should subchondral bone turnover be targeted when treating osteoarthritis? Osteoarthritis. Cartilage. 16, 638-646.   DOI
17 David, J.P., Sabapathy, K., Hoffmann, O., Idarraga, M.H., and Wagner, E.F. (2002). JNK1 modulates osteoclastogenesis through both c-Jun phosphorylation-dependent and -independent mechanisms. J. Cell Sci. 115, 4317-4325.   DOI
18 Fuerst, M., Bertrand, J., Lammers, L., Dreier, R., Echtermeyer, F., Nitschke, Y., Rutsch, F., Schafer, FK., Niggemeyer, O., Steinhagen, J., et al. (2009). Calcification of articular cartilage in human osteoarthritis. Arthritis Rheum. 60, 2694-2703.   DOI
19 Huber, R., Hummert, C., Gausmann, U., Pohlers, D., Koczan, D., and Guthke, R. (2008). Identification of intra-group, inter-individual, and gene-specific variances in mRNA expression profiles in the rheumatoid arthritis synovial membrane. Arthritis Res. Ther. 10, R98.   DOI
20 Ikeda, F., Nishimura, R., Matsubara, T., Tanaka, S., Inoue, J., Reddy, S.V., Hata, K., Yamashita, K., Hiraga, T., Watanabe, T., et al. (2004). Critical roles of c-Jun signaling in regulation of NFAT family and RANKL-regulated osteoclast differentiation. J. Clin. Invest. 114, 475-484.   DOI
21 Kim, I., Kim, H.J., and Kim, H.M. (2010). Array of amorphous calcium phosphate particles improves cellular activity on a hydrophobic surface. J. Biomed. Mater. Res. B (Appl Biomater). 93, 113-121.
22 Kobayashi, N., Kadono, Y., Naito, A., Matsumoto, K., Yamamoto, T., Tanaka, S., and Inoue, J. (2001). Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. EMBO J. 20, 1271-1280.   DOI
23 Lajeunesse, D., and Reboul, P. (2003). Subchondral bone in osteoarthritis: a biologic link with articular cartilage leading to abnormal remodeling. Curr. Opin. Rheumatol. 15, 628-633.   DOI
24 Ryu, J., Kim, H.J., Chang, E.J., Huang, H., Banno, Y., and Kim, H.H. (2006). Sphingosine 1-phosphate as a regulator of osteoclast differentiation and osteoclast-osteoblast coupling. EMBO J. 25, 5840-5851.   DOI
25 Sharma, A.R., Jagga, S., Lee, S.S., and Nam, J.S. (2013). Interplay between cartilage and subchondral bone contributing to pathogenesis of osteoarthritis. Int. J. Mol. Sci. 14, 19805-19830.   DOI
26 Teitelbaum, S.L., and Ross, F.P. (2003). Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 4, 638-649.   DOI
27 Stack, J., and McCarthy, G.m. (2016). Basic calcium phosphate crystals and osteoarthritis pathogenesis: novel pathways and potential targets. Curr. Opin. Rheumatol. 28, 122-126.   DOI
28 Suda, T., Takahashi, N., Udagawa, N., Jimi, E., Gillespie, M.T., and Martin, T.J. (1999). Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 20, 345-357.   DOI
29 Takayanagi, H., Ogasawara, K., Hida, S., Chiba, T., Murata, S., Sato, K., Akinori, T., Yokochi, T., Oda, H., Tanaka, K., et al. (2000). T cellmediated regulation of osteoclastogenesis by signaling cross-talk between RANKL and IFN-${\gamma}$. Nature 408, 600-605.   DOI
30 Wong, B.R., Josien, R., Lee, S.Y., Vologodskaia, M., Steinman, R.M., and Choi, Y. (1998). The TRAF family of signal transducers mediates NF-${\kappa}$B activation by the TRANCE receptor. J. Biol. Chem. 273, 28355-28359.   DOI
31 Yoshitake, F., Itoh, S., Narita, H., Ishihara, K., and Ebisu, S. (2008). Interleukin-6 directly inhibits osteoclast differentiation by suppressing receptor activator of NF-${\kappa}$B signaling pathways. J. Biol. Chem. 283, 11535-11540.   DOI