Browse > Article
http://dx.doi.org/10.14348/molcells.2018.2219

Crystal Structures of Spleen Tyrosine Kinase in Complex with Two Novel 4-Aminopyrido[4,3-d] Pyrimidine Derivative Inhibitors  

Lee, Sang Jae (Research Institute, National Cancer Center)
Choi, Jang-Sik (Oscotec Inc.)
Bong, Seoung Min (Research Institute, National Cancer Center)
Hwang, Hae-Jun (Oscotec Inc.)
Lee, Jaesang (Oscotec Inc.)
Song, Ho-Juhn (Genosco)
Lee, Jaekyoo (Genosco)
Kim, Jung-Ho (Oscotec Inc.)
Koh, Jong Sung (Genosco)
Lee, Byung Il (Research Institute, National Cancer Center)
Abstract
Spleen tyrosine kinase (SYK) is a cytosolic non-receptor protein tyrosine kinase. Because SYK mediates key receptor signaling pathways involving the B cell receptor and Fc receptors, SYK is an attractive target for autoimmune disease and cancer treatments. To date, representative oral SYK inhibitors, including fostamatinib (R406 or R788), entospletinib (GS-9973), cerdulatinib (PRT062070), and TAK-659, have been assessed in clinical trials. Here, we report the crystal structures of SYK in complex with two newly developed inhibitors possessing 4-aminopyrido[4,3-D]pyrimidine moieties (SKI-G-618 and SKI-O-85). One SYK inhibitor (SKI-G-618) exhibited moderate inhibitory activity against SYK, whereas the other inhibitor (SKI-O-85) exhibited a low inhibitory profile against SYK. Binding mode analysis indicates that a highly potent SYK inhibitor might be developed by modifying and optimizing the functional groups that interact with Leu377, Gly378, and Val385 in the G-loop and the nearby region in SYK. In agreement with our structural analysis, one of our SYK inhibitor (SKI-G-618) shows strong inhibitory activities on the ${\beta}$-hexosaminidase release and phosphorylation of SYK/Vav in RBL-2H3 cells. Taken together, our findings have important implications for the design of high affinity SYK inhibitors.
Keywords
cancer; crystal structure; rheumatoid arthritis; spleen tyrosine kinase; SYK;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., et al. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213-221.   DOI
2 Brunger, A.T. (1992). Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472-475.   DOI
3 Buchner, M., Fuchs, S., Prinz, G., Pfeifer, D., Bartholome, K., Burger, M., Chevalier, N., Vallat, L., Timmer, J., Gribben, J.G., et al. (2009). Spleen tyrosine kinase is overexpressed and represents a potential therapeutic target in chronic lymphocytic leukemia. Cancer Res. 69, 5424-5432.   DOI
4 Tang, F., Chen, F., Ling, X., Huang, Y., Zheng, X., Tang, Q. and Tan, X. (2015). Inhibitory effect of methyleugenol on IgE-mediated allergic inflammation in RBL-2H3 cells. Mediators Inflamm. 463530, 1-9.
5 Thoma, G., Blanz, J., Buhlmayer, P., Druckes, P., Kittelmann, M., Smith, A.B., van Eis, M., Vangrevelinghe, E., Zerwes, H.G., Che, J.J., et al. (2014). Syk inhibitors with high potency in presence of blood. Bioorg. Med. Chem. Lett. 24, 2278-2282.   DOI
6 Tina, K.G., Bhadra, R. and Srinivasan, N. (2007). PIC: Protein Interactions Calculator. Nucleic Acids Res. 35, W473-W476.   DOI
7 Vagin, A. and Teplyakov, A. (2010). Molecular replacement with MOLREP. Acta crystallographica. Section D, Biological crystallography 66, 22-25.
8 Vagin, A.A., Steiner, R.A., Lebedev, A.A., Potterton, L., McNicholas, S., Long, F. and Murshudov, G.N. (2004). REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr. D Biol. Crystallogr. 60, 2184-2195.   DOI
9 Wallace, A.C., Laskowski, R.A. and Thornton, J.M. (1995). Ligplot - a program to generate schematic diagrams of protein ligand interactions. Protein Eng. 8, 127-134.   DOI
10 Chen, V.B., Arendall, W.B., 3rd, Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, J.S. and Richardson, D.C. (2010). MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12-21.   DOI
11 Cheng, S.H., Coffey, G., Zhang, X.H.N., Shaknovich, R., Song, Z.B., Lu, P., Pandey, A., Melnick, A.M., Sinha, U. and Wang, Y.L. (2011). SYK inhibition and response prediction in diffuse large B-cell lymphoma. Blood 118, 6342-6352.   DOI
12 Choi, J.S., Hwang, H.J., Kim, S.W., Lee, B.I., Lee, J., Song, H.J., Koh, J.S., Kim, J.H. and Lee, P.H. (2015). Highly potent and selective pyrazolylpyrimidines as Syk kinase inhibitors. Bioorg. Med. Chem. Lett. 25, 4441-4446.   DOI
13 Geahlen, R.L. (2014). Getting Syk: spleen tyrosine kinase as a therapeutic target. Trends Pharmacol. Sci. 35, 414-422.   DOI
14 Coffey, G., Betz, A., DeGuzman, F., Pak, Y., Inagaki, M., Baker, D.C., Hollenbach, S.J., Pandey, A. and Sinha, U. (2014). The novel kinase inhibitor PRT062070 (Cerdulatinib) demonstrates efficacy in models of autoimmunity and B-cell cancer. J. Pharmacol. Exp. Ther. 351, 538-548.   DOI
15 Das J. (2010) Activation or tolerance of natural killer cells is modulated by ligand quality in a nonmonotonic manner. Biophys. J. 99, 2028-2037   DOI
16 Emsley, P., Lohkamp, B., Scott, W.G. and Cowtan, K. (2010). Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486-501.   DOI
17 Ghotra, V.P.S., He, S.N., van der Horst, G., Nijhoff, S., de Bont, H., Lekkerkerker, A., Janssen, R., Jenster, G., van Leenders, G.J.L.H., Hoogland, A.M.M., et al. (2015). SYK Is a candidate kinase target for the treatment of advanced prostate cancer. Cancer Res. 75, 230-240.
18 Krissinel, E. and Henrick, K. (2004). Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D Biol. Crystallogr. 60, 2256-2268.   DOI
19 Hoemann, M., Wilson, N., Argiriadi, M., Banach, D., Burchat, A., Calderwood, D., Clapham, B., Cox, P., Duignan, D.B., Konopacki, D., et al. (2016). Synthesis and optimization of furano[3,2-d]pyrimidines as selective spleen tyrosine kinase (Syk) inhibitors. Bioorg. Med. Chem. Lett. 26, 5562-5567.   DOI
20 Huang, Y.H., Zhang, Y.J., Fan, K.X., Dong, G.Q., Li, B.H., Zhang, W.N., Li, J. and Sheng, C.Q. (2017). Discovery of new Syk inhibitors through structure-based virtual screening. Bioorg. Med. Chem. Lett. 27, 1776-1779.   DOI
21 Lee, S.J., Choi, J.S., Han, B.G., Kim, H.S., Song, H.J., Lee, J., Nam, S., Goh, S.H., Kim, J.H., Koh, J.S., et al. (2016). Crystal structures of spleen tyrosine kinase in complex with novel inhibitors: structural insights for design of anticancer drugs. FEBS J. 283, 3613-3625.   DOI
22 Liu, Y. and Gray, N.S. (2006). Rational design of inhibitors that bind to inactive kinase conformations. Nat. Chem. Biol. 2, 358-364.   DOI
23 Lovering, F., McDonald, J., Whitlock, G.A., Glossop, P.A., Phillips, C., Bent, A., Sabnis, Y., Ryan, M., Fitz, L., Lee, J., et al. (2012). Identification of type-II inhibitors using kinase structures. Chem. Biol. Drug. Des. 80, 657-664.   DOI
24 Lucas, M.C., Goldstein, D.M., Hermann, J.C., Kuglstatter, A., Liu, W., Luk, K.C., Padilla, F., Slade, M., Villasenor, A.G., Wanner, J., et al. (2012). Rational design of highly selective spleen tyrosine kinase inhibitors. J. Med. Chem. 55, 10414-10423.   DOI
25 MacFarlane, L.A. and Todd, D.J. (2014). Kinase inhibitors: the next generation of therapies in the treatment of rheumatoid arthritis. Int. J. Rheum. Dis. 17, 359-368.   DOI
26 Rinaldi, A., Kwee, I., Taborelli, M., Largo, C., Uccella, S., Martin, V., Poretti, G., Gaidano, G., Calabrese, G., Martinelli, G., et al. (2006). Genomic and expression profiling identifies the B-cell associated tyrosine kinase Syk as a possible therapeutic target in mantle cell lymphoma. Brit. J. Haematol. 132, 303-316.   DOI
27 Mocsai, A., Ruland, J. and Tybulewicz, V.L. (2010). The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat. Rev. Immunol. 10, 387-402.   DOI
28 Otwinowski, Z. and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Method. Enzymol. 276, 307-326.
29 Perova, T., Grandal, I., Nutter, L.M., Papp, E., Matei, I.R., Beyene, J., Kowalski, P.E., Hitzler, J.K., Minden, M.D., Guidos, C.J., et al. (2014). Therapeutic potential of spleen tyrosine kinase inhibition for treating high-risk precursor B cell acute lymphoblastic leukemia. Sci. Transl. Med. 6, 236ra262.
30 Prinos, P., Garneau, D., Lucier, J.F., Gendron, D., Couture, S., Boivin, M., Brosseau, J.P., Lapointe, E., Thibault, P., Durand, M., et al. (2011). Alternative splicing of SYK regulates mitosis and cell survival. Nat. Struct. Mol. Biol. 18, 673-679.   DOI
31 Sharman, J., Hawkins, M., Kolibaba, K., Boxer, M., Klein, L., Wu, M., Hu, J., Abella, S. and Yasenchak, C. (2015) An open-label phase 2 trial of entospletinib (GS-9973), a selective Syk inhibitor, in chronic lymphocytic leukemia. Blood 125, 2336-2343.   DOI
32 Shen, J.Y., Li, X.K., Zhang, Z., Luo, J.F., Long, H.Y., Tu, Z.C., Zhou, X.P., Ding, K. and Lu, X.Y. (2016). 3-aminopyrazolopyrazine derivatives as spleen tyrosine kinase inhibitors. Chem. Biol. Drug. Des. 88, 690-698.   DOI
33 Singh, R., Masuda, E.S. and Payan, D.G. (2012). Discovery and development of spleen tyrosine kinase (SYK) inhibitors. J. Med. Chem. 55, 3614-3643.   DOI