Browse > Article
http://dx.doi.org/10.14348/molcells.2018.0091

Hippo Signaling Circuit and Divergent Tissue Growth in Mammalian Eye  

Moon, Kyeong Hwan (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
Kim, Jin Woo (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
Abstract
Vertebrate organ development is accompanied by demarcation of tissue compartments, which grow coordinately with their neighbors. Hence, perturbing the coordinative growth of neighboring tissue compartments frequently results in organ malformation. The growth of tissue compartments is regulated by multiple intercellular and intracellular signaling pathways, including the Hippo signaling pathway that limits the growth of various organs. In the optic neuroepithelial continuum, which is partitioned into the retina, retinal pigment epithelium (RPE) and ciliary margin (CM) during eye development, the Hippo signaling activity operates differentially, as it does in many tissues. In this review, we summarize recent studies that have explored the relationship between the Hippo signaling pathway and growth of optic neuroepithelial compartments. We will focus particularly on the roles of a tumor suppressor, neurofibromin 2 (NF2), whose expression is not only dependent on compartment-specific transcription factors, but is also subject to regulation by a Hippo-Yap feedback signaling circuit.
Keywords
ciliary margin; eye development; Hippo pathway; neurofibromin 2 (NF2); retina;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Akhmametyeva, E.M., Mihaylova, M.M., Luo, H., Kharzai, S., Welling, D.B., and Chang, L.S. (2006). Regulation of the neurofibromatosis 2 gene promoter expression during embryonic development. Dev. Dyn. 235, 2771-2785.   DOI
2 Asaoka, Y., Hata, S., Namae, M., Furutani-Seiki, M., and Nishina, H. (2014). The Hippo pathway controls a switch between retinal progenitor cell proliferation and photoreceptor cell differentiation in zebrafish. PLoS ONE 9, e97365.   DOI
3 Asthagiri, A.R., Parry, D.M., Butman, J.A., Kim, H.J., Tsilou, E.T., Zhuang, Z., and Lonser, R.R. (2009). Neurofibromatosis type 2. Lancet 373, 1974-1986.   DOI
4 Barry, E.R., Morikawa, T., Butler, B.L., Shrestha, K., de la Rosa, R., Yan, K.S., Fuchs, C.S., Magness, S.T., Smits, R., Ogino, S., et al. (2013). Restriction of intestinal stem cell expansion and the regenerative response by YAP. Nature 493, 106-110.
5 Basu-Roy, U., Bayin, N.S., Rattanakorn, K., Han, E., Placantonakis, D.G., Mansukhani, A., and Basilico, C. (2015). Sox2 antagonizes the Hippo pathway to maintain stemness in cancer cells. Nat. Comm. 6, 6411.   DOI
6 Beebe, D.C. (1986). Development of the ciliary body: a brief review. Transact. Ophthal. Soc. U. K. 105, 123-130.
7 Belanger, M.C., Robert, B., and Cayouette, M. (2017). Msx1-Positive Progenitors in the Retinal Ciliary Margin Give Rise to Both Neural and Non-neural Progenies in Mammals. Dev. Cell 40, 137-150.   DOI
8 Bennett, F.C., and Harvey, K.F. (2006). Fat cadherin modulates organ size in Drosophila via the Salvador/Warts/Hippo signaling pathway. Curr. Biol. 16, 2101-2110.   DOI
9 Bosch, M.M., Boltshauser, E., Harpes, P., and Landau, K. (2006a). Ophthalmologic findings and long-term course in patients with neurofibromatosis type 2. Am. J. Ophthal. 141, 1068-1077.   DOI
10 Kim, H.T., and Kim, J.W. (2012). Compartmentalization of vertebrate optic neuroephithelium: external cues and transcription factors. Mol. Cells 33, 317-324.   DOI
11 Kim, J.Y., Park, R., Lee, J.H., Shin, J., Nickas, J., Kim, S., and Cho, S.H. (2016). Yap is essential for retinal progenitor cell cycle progression and RPE cell fate acquisition in the developing mouse eye. Dev. Biol. 419, 336-347.   DOI
12 Kim, N.G., Koh, E., Chen, X., and Gumbiner, B.M. (2011). E-cadherin mediates contact inhibition of proliferation through Hippo signalingpathway components. P Proc. Natl. Acad. Sci. USA 108, 11930-11935.   DOI
13 Lai, Z.C., Wei, X., Shimizu, T., Ramos, E., Rohrbaugh, M., Nikolaidis, N., Ho, L.L., and Li, Y. (2005). Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell 120, 675-685.   DOI
14 Landau, K., and Yasargil, G.M. (1993). Ocular fundus in neurofibromatosis type 2. Br. J. Ophthal. 77, 646-649.   DOI
15 Lavado, A., He, Y., Pare, J., Neale, G., Olson, E.N., Giovannini, M., and Cao, X. (2013). Tumor suppressor Nf2 limits expansion of the neural progenitor pool by inhibiting Yap/Taz transcriptional coactivators. Development 140, 3323-3334.   DOI
16 Curto, M., Cole, B.K., Lallemand, D., Liu, C.-H., and McClatchey, A.I. (2007). Contact-dependent inhibition of EGFR signaling by Nf2/Merlin. J. Cell Biol. 177, 893-903.   DOI
17 Li, W., You, L., Cooper, J., Schiavon, G., Pepe-Caprio, A., Zhou, L., Ishii, R., Giovannini, M., Hanemann, C.O., Long, S.B., et al. (2010). Merlin/NF2 suppresses tumorigenesis by inhibiting the E3 ubiquitin ligase CRL4(DCAF1) in the nucleus. Cell 140, 477-490.   DOI
18 Li, W., Cooper, J., Karajannis, M.A., and Giancotti, F.G. (2012). Merlin: a tumour suppressor with functions at the cell cortex and in the nucleus. EMBO Rep. 13, 204-215.   DOI
19 Cicero, S.A., Johnson, D., Reyntjens, S., Frase, S., Connell, S., Chow, L.M., Baker, S.J., Sorrentino, B.P., and Dyer, M.A. (2009). Cells previously identified as retinal stem cells are pigmented ciliary epithelial cells. Proc. Natl. Acad. Sci. U SA 106, 6685-6690.   DOI
20 Curto, M., and McClatchey, A.I. (2007). Nf2/Merlin: a coordinator of receptor signalling and intercellular contact. Br. J. Cancer 98, 256-262.
21 Fuhrmann, S., Riesenberg, A.N., Mathiesen, A.M., Brown, E.C., Vetter, M.L., and Brown, N.L. (2009). Characterization of a transient TCF/LEF-responsive progenitor population in the embryonic mouse retina. Invest. Ophthal. Vis. Sci. 50, 432-440.   DOI
22 Fuhrmann, S., Zou, C., and Levine, E.M. (2014). Retinal pigment epithelium development, plasticity, and tissue homeostasis. Exp. Eye Res. 123, 141-150.   DOI
23 Fujimura, N., Taketo, M.M., Mori, M., Korinek, V., and Kozmik, Z. (2009). Spatial and temporal regulation of Wnt/${\beta}$-catenin signaling is essential for development of the retinal pigment epithelium. Dev. Biol. 334, 31-45.   DOI
24 Graw, J. (2010). Eye development. Curr. Top. Dev. Biol. 90, 343-386.
25 Harvey, K.F., Pfleger, C.M., and Hariharan, I.K. (2003). The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114, 457-467.   DOI
26 Grzeschik, N.A., Parsons, L.M., Allott, M.L., Harvey, K.F., and Richardson, H.E. (2010). Lgl, aPKC, and Crumbs regulate the Salvador/Warts/Hippo pathway through two distinct mechanisms. Curr. Biol. 20, 573-581.   DOI
27 Ha, T., Moon, K.H., Dai, L., Hatakeyama, J., Yoon, K., Park, H.S., Kong, Y.Y., Shimamura, K., and Kim, J.W. (2017). The Retinal Pigment Epithelium Is a Notch Signaling Niche in the Mouse Retina. Cell Rep. 19, 351-363.   DOI
28 Hamaratoglu, F., Willecke, M., Kango-Singh, M., Nolo, R., Hyun, E., Tao, C., Jafar-Nejad, H., and Halder, G. (2006). The tumoursuppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat. Cell Biol. 8, 27-36.   DOI
29 Huang, J., Wu, S., Barrera, J., Matthews, K., and Pan, D. (2005). The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122, 421-434.   DOI
30 Huang, J.M., Nagatomo, I., Suzuki, E., Mizuno, T., Kumagai, T., Berezov, A., Zhang, H., Karlan, B., Greene, M.I., and Wang, Q. (2013). YAP modifies cancer cell sensitivity to EGFR and survivin inhibitors and is negatively regulated by the non-receptor type protein tyrosine phosphatase 14. Oncogene 32, 2220-2229.   DOI
31 Kanai, F., Marignani, P.A., Sarbassova, D., Yagi, R., Hall, R.A., Donowitz, M., Hisaminato, A., Fujiwara, T., Ito, Y., Cantley, L.C., et al. (2000). TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. EMBO J. 19, 6778-6791.   DOI
32 Chang, B., Smith, R.S., Peters, M., Savinova, O.V., Hawes, N.L., Zabaleta, A., Nusinowitz, S., Martin, J.E., Davisson, M.L., Cepko, C.L., et al. (2001). Haploinsufficient Bmp4 ocular phenotypes include anterior segment dysgenesis with elevated intraocular pressure. BMC Genet. 2, 18.   DOI
33 Bosch, M.M., Wichmann, W.W., Boltshauser, E., and Landau, K. (2006b). Optic nerve sheath meningiomas in patients with neurofibromatosis type 2. Arc. Ophthal. 124, 379-385.   DOI
34 Bretscher, A., Edwards, K., and Fehon, R.G. (2002). ERM proteins and merlin: integrators at the cell cortex. Nat. Rev. Mol. Cell Biol. 3, 586-599.
35 Cabochette, P., Vega-Lopez, G., Bitard, J., Parain, K., Chemouny, R., Masson, C., Borday, C., Hedderich, M., Henningfeld, K.A., Locker, M., et al. (2015). YAP controls retinal stem cell DNA replication timing and genomic stability. eLife 4, e08488.
36 Cho, E., and Irvine, K.D. (2004). Action of fat, four-jointed, dachsous and dachs in distal-to-proximal wing signaling. Development 131, 4489-4500.   DOI
37 Cho, S.H., and Cepko, C.L. (2006). Wnt2b/beta-catenin-mediated canonical Wnt signaling determines the peripheral fates of the chick eye. Development 133, 3167-3177.   DOI
38 Chow, R.L., and Lang, R.A. (2001). Early eye development in vertebrates. Ann. Rev. Cell Dev. Biol. 17, 255-296.   DOI
39 Christ, A., Christa, A., Klippert, J., Eule, J.C., Bachmann, S., Wallace, V.A., Hammes, A., and Willnow, T.E. (2015). LRP2 acts as SHH clearance receptor to protect the retinal margin from mitogenic stimuli. Dev. Cell 35, 36-48.   DOI
40 Li, Y., Zhou, H., Li, F., Chan, S.W., Lin, Z., Wei, Z., Yang, Z., Guo, F., Lim, C.J., Xing, W., et al. (2015). Angiomotin binding-induced activation of Merlin/NF2 in the Hippo pathway. Cell Res. 25, 801-817.   DOI
41 Liu, H., Xu, S., Wang, Y., Mazerolle, C., Thurig, S., Coles, B.L.K., Ren, J.C., Taketo, M.M., van der Kooy, D., and Wallace, V.A. (2007). Ciliary margin transdifferentiation from neural retina is controlled by canonical Wnt signaling. Dev. Biol. 308, 54-67.   DOI
42 Lian, I., Kim, J., Okazawa, H., Zhao, J., Zhao, B., Yu, J., Chinnaiyan, A., Israel, M.A., Goldstein, L.S., Abujarour, R., et al. (2010). The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev. 24, 1106-1118.   DOI
43 Liu, H., Mohamed, O., Dufort, D., and Wallace, V.A. (2003). Characterization of Wnt signaling components and activation of the Wnt canonical pathway in the murine retina. Dev. Dyn. 227, 323-334.   DOI
44 Chan, S.W., Lim, C.J., Chong, Y.F., Pobbati, A.V., Huang, C., and Hong, W. (2011). Hippo pathway-independent restriction of TAZ and YAP by angiomotin. J. Biol. Chem. 286, 7018-7026.   DOI
45 Liu, X., Yang, N., Figel, S.A., Wilson, K.E., Morrison, C.D., Gelman, I.H., and Zhang, J. (2013). PTPN14 interacts with and negatively regulates the oncogenic function of YAP. Oncogene 32, 1266-1273.   DOI
46 Marcucci, F., Murcia-Belmonte, V., Coca, Y., Ferreiro-Galve, S., Wang, Q., Kuwajima, T., Khalid, S., Ross, M.E., Herrera, E., and Mason, C. (2016). The ciliary margin zone of the mammalian retina generates retinal ganglion cells. Cell Rep. 17, 3153-3164.   DOI
47 McLaughlin, M.E., Pepin, S.M., Maccollin, M., Choopong, P., and Lessell, S. (2007). Ocular pathologic findings of neurofibromatosis type 2. Arc. Ophthal. 125, 389-394.   DOI
48 Miesfeld, J.B., Gestri, G., Clark, B.S., Flinn, M.A., Poole, R.J., Bader, J.R., Besharse, J.C., Wilson, S.W., and Link, B.A. (2015). Yap and Taz regulate retinal pigment epithelial cell fate. Development 142, 3021-3032.   DOI
49 Mononen, T.K., K.; Tuppurainen, K. (2007). Colobomatous microphthalmia and a cyst associated with a nonsense NF2 gene mutation. Am. Genet. Soc. f20750.
50 Mohseni, M., Sun, J., Lau, A., Curtis, S., Goldsmith, J., Fox, V.L., Wei, C., Frazier, M., Samson, O., Wong, K.K., et al. (2014). A genetic screen identifies an LKB1-MARK signalling axis controlling the Hippo-YAP pathway. Nat. Cell Biol. 16, 108-117.   DOI
51 Moon, K.H., Kim, H.T., Lee, D., Rao, M.B., Levine, E.M., Lim, D.S., and Kim, J.W. (2018). Differential Expression of NF2 in Neuroepithelial Compartments Is Necessary for Mammalian Eye Development. Dev. Cell 44, 13-28 e13.   DOI
52 Moroishi, T., Park, H.W., Qin, B., Chen, Q., Meng, Z., Plouffe, S.W., Taniguchi, K., Yu, F.X., Karin, M., Pan, D., et al. (2015). A YAP/TAZ induced feedback mechanism regulates Hippo pathway homeostasis. Genes Dev. 29, 1271-1284.   DOI
53 Napier, H.R.L., and Kidson, S.H. (2005). Proliferation and cell shape changes during ciliary body morphogenesis in the mouse. Dev. Dyn. 233, 213-223.   DOI
54 Ohgushi, M., Minaguchi, M., and Sasai, Y. (2015). Rho-Signaling-Directed YAP/TAZ Activity Underlies the Long-Term Survival and Expansion of Human Embryonic Stem Cells. Cell Stem Cell 17, 448-461.   DOI
55 Ohta, K., Ito, A., and Tanaka, H. (2008). Neuronal stem/progenitor cells in the vertebrate eye. Dev. Growth Diff. 50, 253-259.   DOI
56 Robinson, B.S., Huang, J., Hong, Y., and Moberg, K.H. (2010). Crumbs regulates Salvador/Warts/Hippo signaling in Drosophila via the FERM-domain protein Expanded. Curr. Biol. 20, 582-590.   DOI
57 Song, J.Y., Park, R., Kim, J.Y., Hughes, L., Lu, L., Kim, S., Johnson, R.L., and Cho, S.H. (2014). Dual function of Yap in the regulation of lens progenitor cells and cellular polarity. Dev. Biol. 386, 281-290.   DOI
58 Schlegelmilch, K., Mohseni, M., Kirak, O., Pruszak, J., Rodriguez, J.R., Zhou, D., Kreger, B.T., Vasioukhin, V., Avruch, J., Brummelkamp, T.R., et al. (2011). Yap1 acts downstream of alpha-catenin to control epidermal proliferation. Cell 144, 782-795.   DOI
59 Serinagaoglu, Y., Pare, J., Giovannini, M., and Cao, X. (2015). Nf2-Yap signaling controls the expansion of DRG progenitors and glia during DRG development. Dev. Biol. 398, 97-109.   DOI
60 Sivalingam, A., Augsburger, J., Perilongo, G., Zimmerman, R., and Barabas, G. (1991). Combined hamartoma of the retina and retinal pigment epithelium in a patient with neurofibromatosis type 2. J. Ped. Ophthal. Strabis. 28, 320-322.
61 St John, M.A., Tao, W., Fei, X., Fukumoto, R., Carcangiu, M.L., Brownstein, D.G., Parlow, A.F., McGrath, J., and Xu, T. (1999). Mice deficient of Lats1 develop soft-tissue sarcomas, ovarian tumours and pituitary dysfunction. Nat. Genet. 21, 182-186.   DOI
62 Stanger, B.Z. (2008). Organ size determination and the limits of regulation. Cell Cycle 7, 318-324.   DOI
63 Sudol, M. (1994). Yes-associated protein (YAP65) is a proline-rich phosphoprotein that binds to the SH3 domain of the Yes protooncogene product. Oncogene 9, 2145-2152.
64 Tapon, N., Harvey, K.F., Bell, D.W., Wahrer, D.C., Schiripo, T.A., Haber, D., and Hariharan, I.K. (2002). salvador Promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110, 467-478.   DOI
65 Wang, Y., Dakubo, G.D., Thurig, S., Mazerolle, C.J., and Wallace, V.A. (2005). Retinal ganglion cell-derived sonic hedgehog locally controls proliferation and the timing of RGC development in the embryonic mouse retina. Development 132, 5103-5113.   DOI
66 Tropepe, V., Coles, B.L., Chiasson, B.J., Horsford, D.J., Elia, A.J., McInnes, R.R., and van der Kooy, D. (2000). Retinal stem cells in the adult mammalian eye. Science 287, 2032-2036.   DOI
67 Udan, R.S., Kango-Singh, M., Nolo, R., Tao, C., and Halder, G. (2003). Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat. Cell Biol. 5, 914-920.   DOI
68 Verghese, S., Waghmare, I., Kwon, H., Hanes, K., and Kango-Singh, M. (2012). Scribble acts in the Drosophila fat-hippo pathway to regulate warts activity. PLoS ONE 7, e47173.   DOI
69 Westenskow, P., Piccolo, S., and Fuhrmann, S. (2009). Beta-catenin controls differentiation of the retinal pigment epithelium in the mouse optic cup by regulating Mitf and Otx2 expression. Development 136, 2505-2510.   DOI
70 Wiley, L.A., Dattilo, L.K., Kang, K.B., Giovannini, M., and Beebe, D.C. (2010). The Tumor Suppressor Merlin Is Required for Cell Cycle Exit, Terminal Differentiation, and Cell Polarity in the Developing Murine Lens. Invest. Ophthal. Vis. Sci. 51, 3611-3618.   DOI
71 Wu, S., Huang, J., Dong, J., and Pan, D. (2003). hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell 114, 445-456.   DOI
72 Yu, F.X., and Guan, K.L. (2013). The Hippo pathway: regulators and regulations. Genes Dev. 27, 355-371.   DOI
73 Zhao, S., Chen, Q., Hung, F.C., and Overbeek, P.A. (2002). BMP signaling is required for development of the ciliary body. Development 129, 4435-4442.
74 Yue, T., Tian, A., and Jiang, J. (2012). The cell adhesion molecule echinoid functions as a tumor suppressor and upstream regulator of the Hippo signaling pathway. Dev. Cell 22, 255-267.   DOI
75 Zhang, N., Bai, H., David, K.K., Dong, J., Zheng, Y., Cai, J., Giovannini, M., Liu, P., Anders, R.A., and Pan, D. (2010). The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev. Cell 19, 27-38.   DOI
76 Zhang, H., Deo, M., Thompson, R.C., Uhler, M.D., and Turner, D.L. (2012). Negative regulation of Yap during neuronal differentiation. Dev. Biol. 361, 103-115.   DOI
77 Zhou, Y., Tanzie, C., Yan, Z., Chen, S., Duncan, M., Gaudenz, K., Li, H., Seidel, C., Lewis, B., Moran, A., et al. (2013). Notch2 regulates BMP signaling and epithelial morphogenesis in the ciliary body of the mouse eye. Proc. Natl. Acad. Sci. USA 110, 8966-8971.   DOI