Hypoxia Upregulates Mitotic Cyclins Which Contribute to the Multipotency of Human Mesenchymal Stem Cells by Expanding Proliferation Lifespan |
Lee, Janet
(Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine)
Kim, Hyun-Soo (Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine) Kim, Su-Min (Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine) Kim, Dong-Ik (Department of Vascular Surgery, Samsung Seoul Hospital, Sungkyunkwan University School of Medicine) Lee, Chang-Woo (Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine) |
1 | Suda, T., Takubo, K. and Semenza, G.L. (2011). Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 9, 298-310. DOI |
2 | Tsai, C.C., Chen, Y.J., Yew, T.L., Chen, L.L., Wang, J.Y., Chiu, C.H., and Hung, S.C. (2011). Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2Ap21 by HIF-TWIST. Blood 117, 459-469. DOI |
3 | Varum, S., Rodrigues, A.S., Moura, M.B., Momcilovic, O., Easley, C.A. 4th., Ramalho-Santos, J., Van Houten, B., and Schatten, G. (2011). Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PloS One 6, e20914. DOI |
4 | Yanes, O., Clark, J., Wong, D.M., Patti, G.J., Sanchez-Ruiz, A., Benton, H.P., Trauger, S.A., Desponts, C., Ding, S., and Siuzdak, G. (2010). Metabolic oxidation regulates embryonic stem cell differentiation. Nat. Chem. Biol. 6, 411-417. DOI |
5 | Youn, J.I., Park, S.H., Jin, H.T., Lee, C.G., Seo, S.H., Song, M.Y., Lee, C.W., and Sung, Y.C. (2008). Enhanced delivery efficiency of recombinant adenovirus into tumor and mesenchymal stem cells by a novel PTD. Cancer Gene Ther. 15, 703-712. DOI |
6 | Zhang, J., Nuebel, E., Daley, G.Q., Koehler, C.M., and Teitell, M.A. (2012). Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell 11, 589-595. DOI |
7 | Goda, N., Ryan, H.E., Khadivi, B., McNulty, W., Rickert, R.C., and Johnson, R.S. (2003). Hypoxia-inducible factor 1 is essential for cell cycle arrest during hypoxia. Mol. Cell. Biol. 23, 359-369. DOI |
8 | Cairns, R.A., Harris, I.S., and Mak, T. W. (2011). Regulation of cancer cell metabolism. Nat. Rev. Cancer 11, 85-95. DOI |
9 | Das, R., Jahr, H., van Osch, G.J., and Farrell, E. (2012). The role of hypoxia in bone marrow-derived mesenchymal stem cells: considerations for regenerative medicine approaches. Tissue Eng. Part B Rev. 16, 159-168. |
10 | Davy, P., and Allsopp, R. (2011). Hypoxia: are stem cells in it for the long run? Cell Cycle 10, 206-211. DOI |
11 | Greer, S.N., Metcalf, J.L., Wang, Y., and Ohh, M. (2012). The updated biology of hypoxia-inducible factor. EMBO J. 31, 2448-2460. DOI |
12 | Pattappa, G., Heywood, H.K., de Bruijn, J.D., and Lee, D.A. (2011). The metabolism of human mesenchymal stem cells during proliferation and differentiation. J. Cell Physiol. 226, 2562-2570. DOI |
13 | Hu, X., Wu, R., Jiang, Z., Wang, L., Chen, P., Zhang, L., Yang, L., Wu, Y., Chen, H., Chen, H., et al. (2014). Leptin signaling is required for augmented therapeutic properties of mesenchymal stem cells conferred by hypoxia preconditioning. Stem Cells 32, 2702-2713. DOI |
14 | Ito, K., and Suda, T. (2014). Metabolic requirements for the maintenance of self-renewing stem cells. Nat. Rev. Mol. Cell Biol. 15, 243-256. DOI |
15 | Mathieu, J., Zhou, W., Xing, Y., Sperber, H., Ferreccio, A., Agoston, Z., Kuppusamy, K.T., Moon, R.T., and Ruohola-Baker, H. (2014). Hypoxia-inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency. Cell Stem Cell 14, 592-605. DOI |
16 | Mohyeldin, A., Garzon-Muvdi, T., and Quinones-Hinojosa, A. (2010). Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7, 150-161 DOI |
17 | Nagano, M., Kimura, K., Yamashita, T., Ohneda, K., Nozawa, D., Hamada, H., Yoshikawa, H., Ochiai, N., and Ohneda, O. (2010). Hypoxia responsive mesenchymal stem cells derived from human umbilical cord blood are effective for bone repair. Stem Cells Dev. 19, 1195-1210. DOI |
18 | Rafalski, V.A., Mancini, E., and Brunet, A. (2003). Energy metabolism and energy-sensing pathways in mammalian embryonic and adult stem cell fate. J. Cell Sci. 125, 5597-5608. |
19 | Rosova, I., Dao, M., Capoccia, B., Link, D., and Nolta, J.A. (2008). Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells 26, 2173-2182. DOI |