Browse > Article
http://dx.doi.org/10.14348/molcells.2018.2215

Biological Roles of Alternative Autophagy  

Shimizu, Shigeomi (Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University)
Abstract
Atg5 and Atg7 have long been considered as essential molecules for autophagy. However, we found that cells lacking these molecules still form autophagic vacuoles and perform autophagic protein degradation when subjected to certain stressors. During this unconventional autophagy pathway, autophagosomes appeared to be generated in a Rab9-dependent manner by the fusion of vesicles derived from the trans-Golgi and late endosomes. Therefore, mammalian autophagy can occur via at least two different pathways; the Atg5/Atg7-dependent conventional pathway and an Atg5/Atg7-independent alternative pathway.
Keywords
alternative autophagy; Atg5; erythrocyte maturation; Golgi membrane; proteolysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yamaguchi, H., Arakawa, S., Kanaseki, T., Miyatsuka, T., Fujitani, Y., Watada, H., Tsujimoto, H., and Shimizu, S. (2016). Golgi membraneassociated degradation pathway in yeast and mammals. EMBO J. 35, 1991-2007.   DOI
2 Egan, D.F., Shackelford, D.B., Mihaylova, M.M., Gelino, S., Kohnz, R.A., Mair, W., Vasquez, D.S., Joshi, A., Gwinn, D.M., Taylor, R., et al. (2011). Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456-461.   DOI
3 Goginashvili, A., Zhang, Z., Erbs, E., Spiegelhalter, C., Kessler, P., Mihlan, M., Pasquier, A., Krupina, K., Schieber, N., Cinque, L., et al. (2015). Insulin granules. Insulin secretory granules control autophagy in pancreatic ${\beta}$ cells. Science 347, 878-882.   DOI
4 Honda, S., Arakawa, S., Nishida, Y., Yamaguchi, H., Ishii, E., and Shimizu, S. (2014). Ulk1-mediated Atg5-independent macroautophagy mediates elimination of mitochondria from embryonic reticulocytes. Nat. Commun. 5, 4004.
5 Itakura, E., Kishi-Itakura, C., and Mizushima, N. (2012). The hairpintype tail-anchored SNARE Syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151, 1256-1269.   DOI
6 Kaushik, S., and Cuervo, A.M. (2012). Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol. 22, 407-417.   DOI
7 Kim, J., Kundu, M., Viollet, B., and Guan, K.L. (2011). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132-141.   DOI
8 Komatsu, M., and Ichimura, Y. (2010). Selective autophagy regulates various cellular functions. Genes Cells 15, 923-933.   DOI
9 Komatsu, M., Waguri, S., Ueno, T., Iwata, J., Murata, S., Tanida, I., Ezaki, J., Mizushima, N., Ohsumi, Y., Uchiyama, Y., Kominami, E., Tanaka, K., and Chiba, T. (2005). Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 169, 425-434.   DOI
10 Kundu, M., Lindsten, T., Yang, C.Y., Wu, J., Zhao, F., Zhang, J., Selak, M.A., Ney, P.A., and Thompson, C.B. (2008). Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 112, 1493-1502.   DOI
11 Li, W.W., Li, J., and Bao, J.K. (2012). Microautophagy: lesser-known self-eating. Cell Mol. Life Sci. 69, 1125-1136.   DOI
12 Ma, T., Li, J., Xu, Y., Yu, C., Xu, T., Wang, H., Liu, K., Cao, N., Nie, B.M., Zhu, S.Y., et al. (2015). Atg5-independent autophagy regulates mitochondrial clearance and is essential for iPSC reprogramming. Nat. Cell Biol. 17, 1379-1387.   DOI
13 Mizushima, N., and Levine, B. (2010). Autophagy in mammalian development and differentiation. Nat. Cell Biol. 12, 823-830.   DOI
14 Mizushima, N., Ohsumi, Y., and Yoshimori, T. (2002). Autophagosome Formation in Mammalian Cells Tracing of autophagosome formation with mammalian Apg proteins Initial step of autophagosome formation. Cell 429, 421-429.
15 Ra, E.A., Lee, T.A., Kim, S.W., Park, A, Choi, H.J., Jang, I., Kang, S., Cheon, J.H., Cho, J.W., Lee, J.E., et al. (2016). TRIM31 promotes Atg5/Atg7-independent autophagy in intestinal cells. Nature Commun. 7, Article number: 11726
16 Nakatogawa, H., Suzuki K., Kamada, Y., and Ohsumi, Y. (2009). Dynamics and diversity in autophagy mechanisms : lessons from yeast. Nat. Rev. Mol. Cell Biol. 10, 1-10.
17 Nishida, Y., Arakawa, S., Fujitani, K., Yamaguchi, H., Mizuta, T., Kanaseki, T., Komatsu, M., Otsu, K., Tsujimoto, Y., and Shimizu, S. (2009). Discovery of Atg5 / Atg7-independent alternative macroautophagy. Nature 461, 654-658.   DOI
18 Orci, L., Ravazzola, M., Amherdt, M., Yanaihara, C., Yanaihara, N., Halban, P., Renold, A.E., and Perrelet, A. (1984). Insulin, not Cpeptide (proinsulin), is present in crinophagic bodies of the pancreatic B-cell. J. Cell Biol. 98, 222-228.   DOI
19 Shang, L., Chen, S., Du, F., Li, S., Zhao, L., and Wang, X. (2011). Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proc. Natl. Acad. Sci. USA 108, 4788-4793.   DOI
20 Tooze, S.A., and Yoshimori, T. (2010). The origin of the autophagosomal membrane. Nat. Cell Biol. 12, 831-835.   DOI
21 Torii, S., Yoshida, T., Arakawa, S., Honda, S., Nakanishi, A., and Shimizu, S. (2016). Identification of protein phosphatase 1D magnesium-dependent delta isoform as an essential Ulk1 phosphatase for genotoxic stress-induced autophagy. EMBO R. 11, 1552-1564.
22 Wong, P.M., Puente, C., Ganley, I.G., and Jiang, X. (2013). The ULK1 complex: sensing nutrient signals for autophagy activation. Autophagy 9, 124-137.   DOI
23 Wong, P.M., Feng, Y., Wang, J., Shi, R. and Jiang, X. (2015). Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2A. Nat. Commun 6, 8048   DOI